Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)
Áp dụng bđt Cauchy Schwarz dạng Engel ta có:
\(\frac{a^2+b^2+c^2}{3}=\)(\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)).\(\frac{1}{3}\ge\)\(\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\)\(\left(\frac{a+b+c}{3}\right)^2\)(đpcm)
Dấu "=" xảy ra khi a = b = c
(a+b)^2>=4ab
1>=4ab
ab<=1/4
a^3+b^3=(a+b)(a^2-ab+b^2)=a^2-ab+b^2=a^2+2ab+b^3-3ab
=(a+b)^2-3ab=1-3ab>=1-3.1/4=1/4
suy ra đpcm
\(\frac{a^2}{b+c}\)+\(\frac{b+c}{4}\)=\(\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\)>=\(\frac{4a\left(b+c\right)}{4\left(b+c\right)}\)=a (b,c>0)
chứng minh tương tự ta có:\(\frac{b^2}{a+c}\)+\(\frac{c+a}{4}\)>=b
tương tự:\(\frac{c^2}{a+b}\)+\(\frac{a+b}{4}\)>=c
Cộng từng vế bất đẳng thức trên là được nha.Có gì ko hiểu thì hỏi mình
\(\frac{a^2+b^2}{2}\ge ab\)(1)
<=> \(a^2+b^2\ge2ab\)
<=> \(a^2+b^2-2ab\ge0\)
<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì
Vậy (1) đúng với mọi a, b bất kì