\(\widehat{DAC}=\widehat{EBC}=30^0\).

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

từ đề suy ra:

\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)

\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)

áp dụng đl tổng 3 góc trong của một tam giác :

\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)

\(\widehat{ACB}+60^o+60^o=180^o\)

\(\Rightarrow\widehat{ACB}=60^o\)

Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)

suy ra : ABC là tam giác đều(đpcm)

14 tháng 2 2022

-Ủa vậy chị vẽ hình chưa?

22 tháng 11 2017

Tớ chịu

khó qua toán lớp 8 chết mất

xin lỗi bn nha !

2 tháng 10 2018

Tự vẽ hình

Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:

AB = AC (do tam giác ABC cân tại A)

\(\widehat{A}\):góc chung

=>Tam giác ADB=tam giác AEC (...)

=>AD=AE ( hai cạnh tương ứng )




 

10 tháng 8 2019

a,Xét \(\Delta\)AHB và AHD có:AH chung

                                   BH=HD(gt)

                                   AHB=AHD=90

vậy tam giác AHB= tam giác AHC

b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha

Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)

Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)

suy ra tam giác ABD đều

c,Dễ thấy được tam giác ADC cân tại D nên AD=DC

Xét tam giác AHD và tam giác CED có:

        AD=DC

        HDA=EDC(2 góc đối đỉnh)

        AHD=CED=90

nên tam giác AHD=tam giác CED(ch-gn)

suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB

vậy HB=DE(đpcm)

d, I là giao điểm của CE và AH chứ bạn

Xét tam giác AIC có : AE vuông góc với IC

                                CH vuông góc với IA

                           mà CH cắt AE tại D

nên D là trực tâm của tam giác IAC

hay ID vuống góc với AC

mặt khác DF vuông góc với AC

nên I ,D,F thẳng hàng

Chúc bạn học tốt

a,Xét \(\Delta AHB\)và \(\Delta AHD\)

AH chung

HB=HD

\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)

=> \(\Delta AHB\)=\(\Delta AHD\)

b, xem lại đề

c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)

\(\Rightarrow\widehat{DAC}=30^0\)

\(\Rightarrow\Delta DAC\)cân tại D

\(\Rightarrow DA=DC\)

Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)

\(\Rightarrow HD=DE=BH\)(ĐPCM)

d,Xem lại đề

Chúc học tốt!!!!!! :)

27 tháng 4 2019

mk bo tay

hoi chi GOOGLE nha ban

...

28 tháng 4 2019

Xét \(\Delta BEC\)Và   \(\Delta BFD\) có :

     \(\widehat{BEC}\) \(=\)\(\widehat{BFD}\) ( cùng = 900 )

         \(\widehat{B}\) chung 

  \(\Rightarrow\)\(\Delta BEC\) \(~\)\(\Delta BFD\) ( g - g )

Do \(\Delta BEC~\Delta BFD\)\(\Rightarrow\)\(\frac{BE}{BF}\)\(\frac{BC}{B\text{D}}\)

Xét \(\Delta BEF\) Và   \(\Delta BC\text{D}\) có :

   \(\frac{BE}{BF}\)\(=\) \(\frac{BC}{B\text{D}}\)

    \(\widehat{B}\) chung

\(\Rightarrow\) \(\Delta BEF\) \(~\) \(\Delta BC\text{D}\)( c - g - c )

13 tháng 2 2022

 

 

Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.

Xét tam giác ABF và tam giác CAH có:

AFB=CHA=90

AB=CA (vì tam giác abc cân tại A)

ABF=CAH (gt)

=>Tam giác ABF=Tam giác CAH (ch-gn)

=>AF=CH (2 cạnh tương ứng) (1)

Xét tam giác ADF và tam giác CDG có:

AFD=CGD=90

AD=CD (vì D là trung điểm của AC)

ADF=CDG (2 góc đối đỉnh)

=>Tam giác ADF=Tam giác CDG (ch-gn)

=>AF=CG (Hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: CH=CG

Xét tam giác CEH và tam giác CEG có:

CH=CG (cmt)

CHE=CGE=90

EC cạnh chung

=>Tam giác CEH=Tam giác CEG (ch-cgv)

=>CEH=CEG (hai góc tương ứng)

Mà CEH là góc ngoài đỉnh E của tam giác AEC

      CEG là góc ngoài đỉnh E của tam giác BEC

=>CEH=ECA+EAC và CEG=EBC+ECB

=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)

=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)

Lại có: Tam giác ABC cân tại A  =>ACB=ABC

=>ECA+ECB=EBC+EBA (2)

Cộng vế theo vế đẳng thức (1) và (2), ta được:

ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA

=>2ECA+EBA+ECB=2EBC+ECB+EBA

=>2ECA=2EBC

=>ECA=EBC (ĐPCM)

a; Gọi giao của AK và BN là F

góc FBA+góc FAB

\(=\widehat{FAD}+\widehat{BAD}+\widehat{FBE}+\widehat{ABE}\)

\(=90^0-\widehat{ABC}+90^0-\widehat{BAC}+\dfrac{\widehat{DAC}}{2}+\dfrac{\widehat{EBC}}{2}\)

\(=180^0-180^0+\widehat{ACB}+\widehat{DAC}\)

=90 độ

=>AK vuông góc với BN tại F

b: Xét ΔAMN có

AF vừa là đường cao, vừa là phângíac

nên ΔAMN cântại A

=>F là trung điểm của MN

Xét ΔBIK có

BF là đường cao

BF là đường phân giác

Do đó: ΔBIK cân tại B

=>F là trung điểm của IK

Xét tứ giác MINK có 

F là trung điểm chung của MN và IK

nên MINKlà hình bình hành

mà MN vuông góc với IK

nên MINK là hình thoi