K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

H A B C D E O F

a) Xét tam giác AEC và tam giác ADB

có:

\(\widehat{AEC}=\widehat{ADB}=90^o\)

\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)

=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)

b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A 

=> A là trực tâm tam giác ACB

=> HA vuông BC

=> AF vuông BC

Xét tứ giác BFEH có:

\(\widehat{BFH}=\widehat{HEB}=90^o\)

=> BFEH nội tiếp

c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)

Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)

=> ADBF nội tiếp 

=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)

Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)

=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)

=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)

=> Tứ giác DEOF nội tiếp