Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
b: Trên tia đối của tia MA, lấy D sao cho MA=MD
Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>AC=BD
Ta có: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
=>\(\widehat{MAC}=\widehat{ADB}\)(1)
Ta có: AC=BD
AC>AB
Do đó: BD>AB
Xét ΔBAD có BD>BA
mà góc BAD,góc BDA lần lượt là góc đối diện của các cạnh BD,BA
nên \(\widehat{BAD}>\widehat{ADB}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{MAB}>\widehat{MAC}\)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Đề thiếu phải không bạn ?? Đề bài không có dữ liệu một góc nào thì làm kiểu gì ?
ABC cân nên AM là trung tuyến cũng là đường cao
Suy ra AMB = AMC = 90 độ
Đáp án:
a) Xét ΔMIC và ΔNIC ta có:
MI = IN (gt)
∠MIC = ∠NIC = 90 độ (gt)
IC chung
=> ΔMIC = ΔNIC
b, Chỉ đúng khi góc A = 90 độ
c) Xét ΔABM và ΔECM ta có:
BM = MC (gt)
∠BMA = ∠CME (đối đỉnh)
AM = ME (gt)
=> ΔABM = ΔECM => ∠ABM = ∠ECM (góc tướng ứng bằng nhau)
=> AB // EC (do ∠ABM = ∠ECM so le trong)
d) Xét ΔAMI và ΔCMI ta có
MI = IN (gt)
∠AIM = ∠CIN = 90 độ (gt)
AI = IC (gt)
=> ∠MAI = ∠NCI => CK // AE
từ CK // AE và AB // EC => AK = CE (các cặp cạnh // chắn bởi các cặp cạnh //) (1)
Xét ΔAKI và ΔECI ta có
AK = CE (1)
∠KAI = ∠CIE (so le trong)
AI = IC (gt)
=> ΔAKI = ΔECI => ∠AIK = ∠EIC
ta có: ∠AIK + ∠KIN + ∠NIC = 180 độ mà ∠AIK = ∠EIC
=> ∠EIC + ∠KIN + ∠NIC = 180 độ => K, I, E thẳng hàng
Tham khảo:
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên ˆMCI=ˆNCIMCI^=NCI^(hai góc tương ứng)
hay ˆBCA=ˆKCABCA^=KCA^
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
ˆBCA=ˆKCABCA^=KCA^(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔCDA và ΔABC có
AD=CB
\(\widehat{DAC}=\widehat{BCA}\)(hai góc so le trong, DA//BC)
CA chung
Do đó: ΔCDA=ΔABC
*bạn tự vẽ hình nhé
a) Xét Δ AMB và Δ DMC có :
BM = CM (gt)
AM = DM (gt)
góc M1 = M2 ( 2 góc đối đỉnh )
=> ΔAMB = ΔDMC (c-g-c)
=> góc MBA = góc MCD ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD