K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)

nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:

\(AC\cdot AD=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\)(2)

Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)

30 tháng 10 2021

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBCD vuông tại B có BA là đường cao

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

20 tháng 10 2021

b: Xét ΔBCD vuông tại B có BA là đường cao 

nên \(BA^2=AD\cdot AC\left(1\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AC=BH\cdot BC\)

2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??