Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng m: Đoạn thẳng [E, H] Đoạn thẳng n: Đoạn thẳng [F, H] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] A = (-1.98, 1.26) A = (-1.98, 1.26) A = (-1.98, 1.26) C = (7.12, 1.2) C = (7.12, 1.2) C = (7.12, 1.2) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C
a) Xét tam giác AEH và tam giác AHB có:
\(\widehat{AEH}=\widehat{AHB}=90^o\)
Góc A chung
\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)
Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)
Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:
\(HB.HC=AH^2\)
Vậy nên ta có AE.AB = AF.AC = HB.HC
b) Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)
\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)
\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)
\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\)
c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :
\(AC^2=HC.BC\)
Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.
Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)
\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)
J A B C O E D H K M N
a) Xét hai tam giác ABD và ACE có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^o\)
\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)
b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.
c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.
Khi đó \(\widehat{AKN}=\widehat{AMN}\) (Hai góc nội tiếp cùng chắn cung AN)
Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)
Suy ra \(\widehat{AKN}=\widehat{ANM}\)
d) Gọi J là giao điểm của MN với AO.
Xét tam giác vuông ANO, đường cao NJ, ta có:
\(AJ.AO=AN^2\) (Hệ thức lượng)
Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)
\(\Rightarrow AJ.AO=AH.AK\)
\(\Rightarrow AN^2=AH.AK\)
\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)
Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.
Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng (g g) thì sao được ??
a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)
nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(AC\cdot AD=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\)(2)
Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)