Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
Bài 2:
a: \(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=2n\left(2n-2\right)\left(2n-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>4n(n-1) chia hết cho 8
=>4n(n-1)(2n-1) chia hết cho 8
b: \(n^3-19n=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>n(n-1)(n+1)-18n chia hết cho 6
a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3
= (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)
= -3xy(x+y) (do x+y+z=0)
Vì x+y+z=0 =>x+y=-z
=> -3xy(x+y)=3xyz
Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào
Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a hình như lộn đề
b. a = - ( b + c)
\(\Leftrightarrow a^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)
\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)
chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^
1, Ta có a^3+b^3+c^3=3abc
-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2
-> (a+b)3 + c^3 - 3ab(a+b+c)=0
-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0
-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0
Th1: a+b+c=0
->P= a+b/2 . b+c/2 . c+a/2
= (-c)(-a)(-b)/2=-1
TH2 a^2+b^2+c^2-ab-bc-ca=0
->2a^2+2b^2+2c^2-2ab-abc-2ac=0
->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
-> (a-b)^2+(a-c)^2+(b-c)^2=0
Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0
Dấu = xảy ra (=)a-b=0
b-c=0
a-c=0
-> a=b=c
->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Câu hỏi của Akira Kinomoto - Toán lớp 8 - Học toán với OnlineMath