\(⋮27\), chugws minh rằng bca \(⋮27\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9 
=> bca cũng chia hết cho 9 => bca = 9m (m € N) 
ta có: abc = 27k với (k € N) 
abc - bca = 27k - 9m 
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m) 
<=> 99a - 90b - 9c = 9(3k - m) 
<=> 11a - 10b - c + m = 3k 
<=> 21a - 10(a+b+c) + 9c + m = 3k 
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3 
=> m cũng chia hết cho 3 
=> m = 3n (n € N) 
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm) 

~ Chúc bạn học tốt ~

5 tháng 4 2019

Ta có abc \(⋮\)27

=>abc0 \(⋮\)27

a000+bc0\(⋮\)27

999a+(a+bc0 )\(⋮\)27

999a+(a+bc0 )\(⋮\)27

27.37a + bca \(⋮\)27

Vì 27.37a\(⋮\)27

=> bca \(⋮\)27

\(\overline{abc}⋮27\)

\(\Rightarrow\overline{abc0}⋮27\)

\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)

\(\Rightarrow999a+a+\overline{bc0}⋮27\)

\(\Rightarrow27.37a+\overline{bca}⋮27\)

do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)

8 tháng 10 2019

Bạn tham khảo :

       Câu hỏi của Soái ca 2k6       

8 tháng 10 2019

Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.

=> 1000a + bc0 chia hết cho 27.

=> 999a + a + bc0 chia hết cho 27.

=> 27.37.a + bac chia hết cho 27.

Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )

12 tháng 1 2017

phần a mk ko hỉu lắm còn phần b thì có 1 số 135 chia hết cho 37 nhưng 531 không chia hết cho 27

8 tháng 1 2018

a)

ta có abcde-e-2d=abc00+10d+e-e-2d

                           =abc00+8d

vì abc00 có 2 c/s tận cùng bằng 0 mà 0:4  suy ra abc00:4

và 8d=2.4.d:4

vậy abcde-(e+2d):4

   mà abcde:4

suy ra e+2d:4

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

31 tháng 10 2016

\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)

16 tháng 12 2018

\(Taco:\hept{\begin{cases}a+4b⋮13\\13a+13b⋮13\end{cases}}\Rightarrow13a+13b-3\left(a+4b\right)⋮13\Rightarrow10a+b⋮13\)

16 tháng 12 2017

chứng minh:bca⋮37

bca=b.100+c.10+a

bca=b.100+c.10+a.1

bca=(b+c+a).(100+10+1)

bca=(b+c+a).111

bca=(b+c+a).3.37

⇒bca⋮37

7 tháng 11 2017

9x10n+18

=9.(10n+2)

có 27=3.9

Mà 9 chia hết cho 9

=> 10n+2 chia hết cho 3

Ta có : 10n=1......0       ( n thuộc N ; n khác 0 )

         mà 10n+2=1....0+2=10...02     

Mà 10....02 chia hết cho 3

Vậy 9x10n+18 chia hết cho 27