Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay abc=2012 vào ta có:
\(A=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ca+abc^2+abc}\)
\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{ca\left(bc\right)}{ca\left(1+bc+b\right)}\)
\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(=\frac{1+b+bc}{1+b+bc}=1\)
Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath
Ta có : \(a+b+c=6\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)
\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)
Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Khi đó biểu thức :
\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)
\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)
\(=2.6^2-6.12=0\)
Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{ac+1+c}{ac+c+1}\)
\(A=1\)
\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)
\(A=1\)
Lười đánh máy thật sự, buốt tay lắm:((
Ta có: \(Q=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac+1+c}{1+ac+c}=1\)
Vậy Q=1
Q=ab+a+1a+bc+b+1b+ac+c+1c
Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}Q=c(ab+a+1)ac+ac(bc+b+1)abc+ac+c+1c
Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}Q=abc+ac+cac+abc2+abc+acabc+ac+c+1c
Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}Q=1+ac+cac+c+a+ac1+ac+c+1c
Q=\dfrac{ac+1+c}{1+ac+c}=1Q=1+ac+cac+1+c=1
chúc bạn thi tốt