K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2018

Lời giải:

Ta có:

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

\(S=\frac{c}{1.c+ac+abc}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ac}\)

Thay \(abc=1\) ta có:

\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)

\(S=\frac{a+ac+1}{c+ac+1}=1\)

30 tháng 3 2018

\(s=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\) \(s=\frac{bc}{bc+abc+ab^2c}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}\)=>

\(s=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>

\(s=\frac{1+b+bc}{1+b+bc}=1\)Vậy với a.b.c=1 S=1 

30 tháng 3 2018

vao cau hoi tuong tu ma xem

21 tháng 6 2017

Ta có :

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)

\(A=\dfrac{a+ab+1}{ab+a+1}\)

\(\Rightarrow A=1\left(đpcm\right)\)

20 tháng 6 2017

kiểm tra lại đề đi bạn

12 tháng 4 2018

\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)

vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)

chúc bạn học tót ^^

12 tháng 4 2018

uhm, cảm ơn bạn nhìu nheeeeeeee :)

15 tháng 8 2017

CTHH có mà (=.=") https://hoc24.vn/hoi-dap/question/384421.html

12 tháng 5 2023

Vì: \(0\le a\le b\le c\le1\) nên:

\(\left(a-1\right).\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\)    (1)

\(\left(a-1\right).\left(c-1\right)\ge0\Leftrightarrow ac-a-c+1\ge0\Leftrightarrow ac+1\ge a+c\)

\(\Leftrightarrow\dfrac{1}{ac+1}\le\dfrac{1}{a+c}\Leftrightarrow\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\)    (2)

\(\left(b-1\right).\left(c-1\right)\ge0\Leftrightarrow bc-b-c+1\ge0\Leftrightarrow bc+1\ge b+c\)

\(\Leftrightarrow\dfrac{1}{bc+1}\le\dfrac{1}{b+c}\Leftrightarrow\dfrac{a}{bc+1}\le\dfrac{a}{b+c}\)      (3)

Cộng vế với vế của (1)(2) và (3) ta được:

\(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)

\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2a+2b+2c}{a+b+c}\)

\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2.\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ac+1}\le2\left(đpcm\right)\)

 

AH
Akai Haruma
Giáo viên
3 tháng 1 2019

Lời giải:

Thay $abc=1$ ta có:
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+a.c+ab.c}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ca}=\frac{c+ca+1}{1+c+ca}=1\)

22 tháng 3

Do a,b,c thuộc N mà a,b,c<1

\(\Rightarrow\)a=0,b=0,c=0

Vậy ....

 

13 tháng 5 2017

Từ đề bài:A=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=8\cdot\dfrac{3}{4}=6\)

13 tháng 5 2017

\(A=\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)

\(=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}\\ =abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\ =8\cdot\dfrac{3}{4}\\ =6\)