Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật sự á, cái đề làm t đau đầu từ sáng giờ, nhờ cmt của bạn Arima Kousei t mới làm đc!
Đề đúng là tìm min của \(M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\)
Áp dụng BĐT Cô - si cho 4 số không âm, ta được:
\(3a^4+1=a^4+a^4+a^4+1\ge4\sqrt[4]{a^{12}}=4a^3\)
Tương tự ta có: \(3b^4+1\ge4b^3\)
\(\Rightarrow M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\)
Ta có BĐT phụ \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)(*)
Thật vậy (*)\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow M\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{4\left(a+b+c\right)^3}=\frac{1}{4}\)
Đẳng thức xảy ra khi a = b = 1; c = 2
P/S: Sai nữa thì chịu ,mình đã cố gắng hết sức
Ta có:\(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}>=1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Tương tự \(\frac{1}{b^2+1}>=1-\frac{b}{2}\)
1/(c^2+1)>=1-c/2