Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
\(\sum\dfrac{a}{\left(a^2+1\right)+2b+2}\le\sum\dfrac{a}{2\left(a+b+1\right)}=\dfrac{1}{2}\)
a)Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+1\ge2y\end{matrix}\right.\)\(\Rightarrow x^2+2y^2+1\ge2xy+2y\)
\(\Rightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Rightarrow\dfrac{1}{x^2+2y^2+3}\le\dfrac{1}{2\left(xy+y+1\right)}\Leftrightarrow\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
b)Áp dụng bổ đề trên ta có:
\(a^2+2b^2+3\ge2ab+2b+2\Rightarrow\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2\left(ab+b+1\right)}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{1}{b^2+2c^2+3}\le\dfrac{1}{2\left(bc+b+1\right)};\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2\left(ac+c+1\right)}\)
Cộng theo vế 3 BĐT trên ta có:
\(Q\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+b+1\right)}+\dfrac{1}{2\left(ac+c+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ac+c+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{a}{ac+c+1}+\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}\right)\left(abc=1\right)\)
\(=\dfrac{1}{2}\left(\dfrac{ac+c+1}{ac+c+1}\right)=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a) BĐT cần cm tương đương ;
\(a-\dfrac{ab^2}{1+b^2}+b-\dfrac{bc^2}{1+c^2}+a-\dfrac{a^2c}{1+a^2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow3-\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\le\dfrac{3}{2}\)
Áp dụng BĐT Cauchy
\(\Rightarrow\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
tương tự rồi cộng vế theo vế các BĐT lại
\(\Leftrightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{ab+bc+ac}{2}\)
mặt khác \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{3}{2}\)
ĐPCM
Giả sử c là số ở giửa a và b. khi đó \(\left(b-c\right)\left(c-a\right)\ge0\)
Ta chứng minh :
\(VT\le c\left(\dfrac{b^2}{2b^2+a^2+c^2}+\dfrac{a^2}{2a^2+b^2+c^2}\right)+\dfrac{abc}{a^2+b^2+2c^2}\)(*)
\(\Leftrightarrow\dfrac{\left(c-a\right)\left(b-c\right)\left(b^2+c^2-bc+a^2\right)}{\left(a^2+c^2+2b^2\right)\left(b^2+a^2+2c^2\right)}\ge0\) (Đúng)
Áp dụng BĐT AM-GM:
\(VT\le\dfrac{c}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)+\dfrac{abc}{2ac+2bc}\)
\(\le\dfrac{c}{4}\left(1+\dfrac{b^2}{2bc}+\dfrac{a^2}{2ac}\right)+\dfrac{\dfrac{\left(a+b\right)^2}{4}}{2\left(a+b\right)}=\dfrac{c}{4}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\)
\(=\dfrac{a+b+c}{4}\)( \(ĐpcM\))
Dấu = xảy ra khi a=b=c
Áp dụng BĐT AM - GM, ta có:
\(a^2+2b^2+3\)
\(=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)
\(\ge2ab+2b+2\)
Tương tự, ta có: \(b^2+2c^2+3\ge2bc+2c+2\) và \(c^2+2a^2+3\ge2ac+2a+2\)
\(VT=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
\(\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ac+2a+2}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{abc}{ac+a^2bc+abc}\right)\) (Thay abc = 1)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1+ab+b}{ab+b+1}\)
\(=\dfrac{1}{2}=VP\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c = 1