K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

{1+a}{1+b}+{1+b}{1+c}+{1+c}{1+a}

=1+a+b+ab+1+b+c+bc +1+c+a+ca

=1+1+1+{a+b+c}+{a+b+c} +ab+bc+ca

=5+ab+bc+ca 

vìab+bc+ca >0 =>5+ab+bc+ca >5

lik-e cho minh nha

2 tháng 1 2018

post ít một thôi

25 tháng 4 2020

Ta có :

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\left(1+\frac{a+b+c}{a}\right)\left(1+\frac{a+b+c}{b}\right)\left(1+\frac{a+b+c}{c}\right)\)

\(=\left(\frac{2a+b+c}{a}\right)\left(\frac{2b+a+c}{b}\right)\left(\frac{2c+a+b}{c}\right)\)

\(=\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\)

Áp dụng BĐT Cô-si,ta có :

\(\frac{a+b}{a}+\frac{a+c}{a}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}\)

\(\frac{a+b}{b}+\frac{b+c}{b}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)

\(\frac{a+c}{c}+\frac{b+c}{c}\ge2\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)

\(\Rightarrow\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\ge8\sqrt{\frac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{a^2b^2c^2}}\)

\(\ge8\sqrt{\frac{\left[8\sqrt{a^2b^2c^2}\right]^2}{a^2b^2c^2}}=8\sqrt{64}=64\)

Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)

12 tháng 12 2017

ủa sao thấy cái đề có j đó sai sai

12 tháng 12 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)

27 tháng 10 2018

Mr Lazy sai chỗ dấu "=" rồi nha! a + b + c = 3 thì sao lại ghi : "Dấu "=" xảy ra khi a=b=c=3" được???

Giải

Cách 1: Áp dụng BĐT Cauchy-schwarz,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{3}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c =1

Cách 2: Theo BĐT cô si,ta có:

\(a+b+c\ge3\sqrt[3]{abc}\) (1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (2)

Nhân theo vế của (1) và (2),ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c =1

12 tháng 8 2015

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi a = b = c = 4-1 = 3.