Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Muốn chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) ta chỉ cần chỉ ra \(ab+bc+ac=1\)
Thật vậy:
\((a+b+c)^2-(a^2+b^2+c^2)=2^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)-(a^2+b^2+c^2)=2\)
\(\Leftrightarrow 2(ab+bc+ac)=2\Rightarrow ab+bc+ac=1\)
Do đó ta có đpcm.
Ta có :
\(a^3+a^2c-abc+b^2c+b^3=0\)
\(\Leftrightarrow\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\) ( Luôn đúng vì \(a+b+c=0\) )
Wish you study well !!
Solution:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2\cdot\left(-b\right)+b^2\cdot\left(-a\right)-abc\)
\(=-ab\left(a+b+c\right)\)
\(=0\)
Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)
Mà \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow2ab+2ac+2bc=0\)
\(\Rightarrow2\left(ab+ac+bc\right)=0\)
\(\Rightarrow ab+ac+bc=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)
Ta có:
\(A=a^3+a^2c-abc+b^2c+b^3=0\Rightarrow\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)=0\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)
Mà theo giả thiết thì \(a+b+c=0\Rightarrow A=0\)
P/s: Lười ghi nên đổi thành A nhé ;)
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
Câu trả lời hay nhất: áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
tk mk nha $_$