Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
![](https://rs.olm.vn/images/avt/0.png?1311)
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
![](https://rs.olm.vn/images/avt/0.png?1311)
#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(
Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)
Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh
\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)
\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)
Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)
\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)
Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)
Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:
\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)
\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)
\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\)
Điều này đúng tức là ta có ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ giả thiết ta có \(1+c^2=ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\) ; \(1+a^2=ab+bc+ac+a^2=\left(a+b\right)\left(a+c\right)\)
\(1+b^2=ab+bc+ac+b^2=\left(b+a\right)\left(b+c\right)\)
Suy ra \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}=\frac{a+b}{\left(c+a\right)\left(c+b\right)}+\frac{b+c}{\left(a+b\right)\left(a+c\right)}+\frac{c+a}{\left(b+a\right)\left(b+c\right)}\)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Theo BĐT Cauchy , ta có : \(\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(a+b\right)^2}{\left(a+b+b+c+c+a\right)^3}=\frac{27\left(a+b\right)^2}{8\left(a+b+c\right)^3}\)
Tương tự : \(\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(b+c\right)^2}{8\left(a+b+c\right)^3}\) ; \(\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(c+a\right)^2}{8\left(a+b+c\right)^3}\)
\(\Rightarrow\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{8\left(a+b+c\right)^3}.3\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]\)
\(\ge\frac{9}{8\left(a+b+c\right)^3}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2\) (Áp dụng BĐT Bunhiacopxki)
\(=\frac{9.4\left(a+b+c\right)^2}{8\left(a+b+c\right)^3}=\frac{9}{2\left(a+b+c\right)}\) (đpcm)
ko biết đúng hay sai
Theo cosi ab+bc+ac≥3\(\sqrt[3]{a^2b^2c^2}\) nên abc=<1/3
quy đồng thay abc=<1/3 vô