K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

gt <=> \(a+2901+b+2901+2\sqrt{\left(a+2901\right)\left(b+2901\right)}=4\left(c+2901\right)\)      (Bình phương 2 vế)

<=>   \(a+b+2\sqrt{\left(a+2901\right)\left(b+2901\right)}=4c+5802\)      (1)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ, ĐƯỢC:

 \(2\sqrt{\left(a+2901\right)\left(b+2901\right)}\le a+2901+b+2901\)

=> \(a+b+2\sqrt{\left(a+2901\right)\left(b+2901\right)}\le a+b+a+2901+b+2901\)        (2)

TỪ (1) VÀ (2) TA ĐƯỢC: 

=> \(4c+5802\le a+b+a+2901+b+2901\)

=> \(4c\le2\left(a+b\right)\)

=> \(2c\le a+b\)

VẬY TA CÓ ĐPCM:     \(a+b\ge2c\)

12 tháng 8 2020

chứng minh và vận dụng được bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(2\left(\sqrt{a+2901}^2+\sqrt{b+2901}^2\right)\ge\left(\sqrt{a+2901}+\sqrt{b+2901}\right)^2=4\sqrt{c+2901}\)

\(\Leftrightarrow2\left(a+b\right)\ge4c\)

từ đó ta có đpcm

12 tháng 1 2021

Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).

Đặt biểu thức ở VT là A. Ta có: 

\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).

Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).

Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.

Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).

Đẳng thức xảy ra khi a = b = c = 3.

Vậy...

 

NV
12 tháng 1 2021

Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)

\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)

\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

NV
1 tháng 5 2021

\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)

Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)

\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)

Ta có đánh giá:

\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)

Thật vậy, BĐT tương đương:

\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự và cộng lại:

\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)

26 tháng 9 2021

Áp dụng BĐT Cauchy cho 2 số dương:

\(\sqrt{2a+b}=\sqrt{\left(2a+b\right).1}\le\dfrac{2a+b+1}{2}\)

CMTT: \(\sqrt{2b+c}\le\dfrac{2b+c+1}{2},\sqrt{2c+a}\le\dfrac{2c+a+1}{2}\)

\(\Rightarrow T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\le\dfrac{2a+b+1+2b+c+1+2c+a+1}{2}=\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)

\(maxT=3\Leftrightarrow2a+b=2b+c=2c+a=1=a+b+c\)

\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

 

8 tháng 10 2021

\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)

\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)

\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)

\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Cách khác:

Áp dụng BĐT Bunhiacopxky:

$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$

$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$

Tương tự với các căn thức còn lại và cộng theo vế:

$M\sqrt{5}\geq 5(a+b+c)$

$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:

\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)

\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)

Hoàn toàn tương tự:

\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)

Cộng theo vế:

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

NV
15 tháng 1 2021

\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)

Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)

Cộng vế với vế:

\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)

14 tháng 1 2021

\(VT\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

NV
22 tháng 10 2021

\(P\sqrt{2}\ge\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{c^2+a^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2011}\\a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P2\sqrt{2}\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(P4\sqrt{2}\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(P2\sqrt{2}\ge\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)=x+y+z=\sqrt{2011}\)

\(\Rightarrow P\ge\dfrac{\sqrt{2011}}{2\sqrt{2}}\)

Đề sai