\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

\(VT\ge\frac{27}{abc}+abc=abc+\frac{1}{abc}+\frac{26}{abc}\ge2+\frac{26}{\frac{\left(a+b+c\right)^3}{27}}=26+2=28\left(a+b+c=3\right)\)

Dấu bằng xảy ra khi a=b=c=1

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

23 tháng 2 2020

\(VT=\text{Σ}\left(\frac{1}{a}-1\right)=\frac{b+c}{a}.\frac{c+a}{b}.\frac{a+b}{c}\)

\(\ge\frac{8\sqrt{a^2b^2c^2}}{abc}=8\)(cô - si)

Dấu "=" xảy ra khi a = b = c =\(\frac{1}{3}\))

23 tháng 2 2020

bỏ cái dấu xích ma kia đi nha, mk lộn qua tổng

AH
Akai Haruma
Giáo viên
1 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:

\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)

Tiếp tục áp dụng AM_GM:

\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn

\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng hai BĐT thu được lại, ta có:

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

2 tháng 9 2019

Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)

BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)

\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)

Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)

\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).

Từ đó ta có thể suy ra đpcm.

2 tháng 9 2019

Nãy nhầm vị trí:v Làm lại bài 3:

Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)

\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)

Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:

\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)

\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.

Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)

\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)

Như vậy ta có đpcm.

P.s: Mong là lần này không bị nhầm

7 tháng 8 2016

Thay abc = 1 vào bđt cần chứng minh : 

\(a+b+c\ge\frac{a\left(bc+1\right)}{b\left(ac+1\right)}+\frac{b\left(ac+1\right)}{c\left(ab+1\right)}+\frac{c\left(ab+1\right)}{a\left(bc+1\right)}\)

\(\Leftrightarrow a\left(1-\frac{bc+1}{ac+1}\right)+b\left(1-\frac{ac+1}{ab+1}\right)+c\left(1-\frac{ab+1}{bc+1}\right)\ge0\)

\(\Leftrightarrow\frac{ac\left(a-b\right)}{ac+1}+\frac{ab\left(b-c\right)}{ab+1}+\frac{bc\left(c-a\right)}{bc+1}\ge0\)

\(\Leftrightarrow\frac{ac\left[-\left(c-a\right)-\left(b-c\right)\right]}{ac+1}+\frac{ab\left[-\left(a-b\right)-\left(c-a\right)\right]}{ab+1}+\frac{bc\left[-\left(b-c\right)-\left(a-b\right)\right]}{bc+1}\ge0\)

\(\Leftrightarrow\left[\frac{-ac\left(c-a\right)}{ac+1}-\frac{ab\left(c-a\right)}{ab+1}\right]+\left[-\frac{ac\left(b-c\right)}{ac+1}-\frac{bc\left(b-c\right)}{bc+1}\right]+\left[-\frac{ab\left(a-b\right)}{ab+1}-\frac{bc\left(a-b\right)}{bc+1}\right]\ge0\)

\(\Leftrightarrow-a\left(c-a\right)\left(c+b\right)\left(\frac{1}{ac+1}+\frac{1}{ab+1}\right)-c\left(b-c\right)\left(a+b\right)\left(\frac{1}{ac+1}+\frac{1}{bc+1}\right)-b\left(a-b\right)\left(a+c\right)\left(\frac{1}{ab+1}+\frac{1}{bc+1}\right)\ge0\)(1)

Đặt \(x=\frac{1}{ab+1},y=\frac{1}{bc+1},z=\frac{1}{ac+1}\)

Tiếp tục phân tích : \(-c\left(b-c\right)\left(a+b\right).x-b\left(a-b\right)\left(a+c\right).y=-c\left(a+b\right).x\left[-\left(c-a\right)-\left(a-b\right)\right]-b\left(a+c\right).y\left[-\left(b-c\right)-\left(c-a\right)\right]\)

\(=\left(c-a\right).\left[c\left(a+b\right)x+b\left(a+c\right)y\right]+c\left(a+b\right)\left(a-b\right).x+b\left(a+c\right)\left(b-c\right).y\)

Tới đây giả sử \(a\ge b\ge c>0\) là ra nhé :)

 

 

 

5 tháng 1 2017

Câu 2)

Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)

\(\Leftrightarrow9\ge4\left(ab+2\right)\)

\(\Rightarrow9\ge4ab+8\)

\(\Rightarrow1\ge4ab\)

Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )

5 tháng 1 2017

Câu 3)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

\(a+b+c=1\)

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si

\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)

\(\Rightarrow\) ĐPCM