Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng
Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
Ta cần chứng minh \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)
Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)
Bất đẳng thức đã được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
\(VT=\frac{a^3}{b^2+8}+\frac{b^3}{c^2+8}+\frac{c^3}{a^2+8}\)
\(=\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)
\(=\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\)
Áp dụng BĐT Cô si ta có :
\(\left\{{}\begin{matrix}\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3a}{4}\\\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{c+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(c+a\right)\left(a+b\right)}+\frac{c+a}{8}+\frac{a+b}{8}\ge\frac{3c}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{b^3}{\left(b+c\right)\left(c+a\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{a+b+c}{4}\ge\frac{\sqrt{3\left(ab+bc+ca\right)}}{4}=\frac{3}{4}\)
Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)
Lời giải:
Ta có:
\(\text{VT}=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)
\(=\frac{a^3}{(b+a)(b+c)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)
Áp dụng BĐT AM-GM:
\(\frac{a^3}{(b+a)(b+c)}+\frac{b+a}{8}+\frac{b+c}{8}\geq 3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3a}{4}\)
\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3b}{4}\)
\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq \frac{3c}{4}\)
Cộng theo vế và rút gọn thu được:
\(\text{VT}\geq \frac{a+b+c}{4}\)
Tiếp tục áp dụng BĐT AM-GM: \((a+b+c)^2\geq 3(ab+bc+ac)=9\Rightarrow a+b+c\geq 3\)
Do đó: \(\text{VT}\geq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{a^2}+\frac{1}{c^2}\geq \frac{2}{ac}\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=\frac{3}{abc}\)
Để bài toán được giải quyết ta sẽ CM: \(\frac{3}{abc}\geq a^2+b^2+c^2\)
\(\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)\)
Thật vậy, theo BĐT AM-GM và các hệ quả của nó:
\(9abc=3abc(a+b+c)\leq (ab+bc+ac)^2\)
\(\Rightarrow 9abc(a^2+b^2+c^2)\leq (ab+bc+ac)^2(a^2+b^2+c^2)\)
Mà: \((ab+bc+ac)^2(a^2+b^2+c^2)\leq \left(\frac{ab+bc+ac+ab+bc+ac+a^2+b^2+c^2}{3}\right)^3=\frac{(a+b+c)^6}{27}=27\)
\(\Rightarrow 9abc(a^2+b^2+c^2)\leq 27\Rightarrow abc(a^2+b^2+c^2)\leq 3\)
BĐT $(*)$ được cm. Bài toán hoàn tất.
Dấu "=" xảy ra khi $a=b=c=1$
\(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế: \(VT\ge\frac{a+b+c}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Theo em bài này có 2 lỗi sai, thứ nhất:
Theo BĐT dòng 3 thì ta có :\(a+b+c\ge1\)
Tuy nhiên dấu đẳng thức lại xảy ra khi \(a=1,b=c=0\) (Thực ra thay đẳng thức a = b = c = 1 vào nó cũng không thỏa mãn!)
Thứ 2: Dòng kế cuối, nếp áp dụng BĐT dòng 4 thì: \(\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{9}\ge\frac{\left(a+b+c\right)}{9}\ge\frac{\sqrt[3]{abc}}{3}?!\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Copy paste lại bài hôm rồi, đỡ phải nghĩ:v
Ta chứng minh bổ đề sau: cho hai dãy số dương \(a\ge b\ge c\) và \(x\ge y\ge z\) thì \(ax+by+cz\ge bx+cy+az\)
Thật vậy, BĐT tương đương:
\(\left(a-b\right)x+\left(b-c\right)y-\left(a-c\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)
Áp dụng:
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b^2+c^2}\ge\frac{1}{c^2+a^2}\ge\frac{1}{a^2+b^2}\end{matrix}\right.\)
\(\Rightarrow P=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}+\frac{a^3}{a^2+b^2}\)
Ta có: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Thiết lập tương tự và cộng lại:
\(P\ge\frac{1}{2}\left(a+b+c\right)^2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)