K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)

DO:

\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)

\(\Rightarrow DPCM\)

Tích t vs ku

27 tháng 12 2016

Thì mỗi người mỗi sở thích mà :)

26 tháng 12 2016

tại sao cậu cứ đăng câu hỏi tớ ghét cậu

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

Áp dụng BĐT AM-GM ta có:

$\text{VT}=[\frac{a+1}{4}+\frac{1}{a+1}+\frac{3}{4}a-\frac{1}{4}][\frac{b+1}{4}+\frac{1}{b+1}+\frac{3}{4}b-\frac{1}{4}][\frac{c+1}{4}+\frac{1}{c+1}+\frac{3}{4}c-\frac{1}{4}]$

$\geq [2\sqrt{\frac{1}{4}}+\frac{3}{4}a-\frac{1}{4}][2\sqrt{\frac{1}{4}}+\frac{3}{4}b-\frac{1}{4}][2\sqrt{\frac{1}{4}}+\frac{3}{4}c-\frac{1}{4}]$
$=\frac{3}{4}(a+1).\frac{3}{4}(b+1).\frac{3}{4}(c+1)$
$=\frac{27}{64}(a+1)(b+1)(c+1)$

$\geq \frac{27}{64}.2\sqrt{a}.2\sqrt{b}.2\sqrt{c}$

$=\frac{27}{64}.8\sqrt{abc}\geq \frac{27}{64}.8=\frac{27}{8}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

15 tháng 2 2018

Câu 1) ngộ thế

20 tháng 8 2023

Có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )

\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))

Lại có: \(M=a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)

\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))

\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))

\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy \(M=\dfrac{1}{2}\)

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)