\(a^2+b^2+c^2=1\)

Tìm GTNN của:

A=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Áp dụng bất đẳng thức AM-GM:

\(\dfrac{a}{b^2+c^2}+\left(b^2+c^2\right)\ge2\sqrt{a}\)

\(\dfrac{b}{c^2+a^2}+\left(c^2+a^2\right)\ge2\sqrt{b}\)

\(\dfrac{c}{a^2+b^2}+\left(a^2+b^2\right)\ge2\sqrt{c}\)

Cộng theo vế:

\(A+2\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Mặt khác: \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\left(a+b+c\right)\)

\(\left(3a+3b+3c\right)^2\ge27\left(a^2+b^2+c^2\right)=27\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{27}\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt[4]{27}\)

\(A\ge\sqrt[4]{27}-2\)

5 tháng 9 2018

Sai rồi bạn !

10 tháng 4 2018

Violympic toán 8

10 tháng 4 2018

Violympic toán 8

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Nếu đổi đề như đã nói phía dưới thì ta làm như sau:

Áp dụng BĐT Cauchy:

\(\sqrt{a-1}=\sqrt{1(a-1)}\leq \frac{1+(a-1)}{2}=\frac{a}{2}\)

\(\Rightarrow \frac{\sqrt{a-1}}{a}\leq \frac{a}{2a}=\frac{1}{2}\)

\(\sqrt{b-2}=\frac{\sqrt{2(b-2)}}{\sqrt{2}}\leq \frac{1}{\sqrt{2}}.\frac{2+(b-2)}{2}=\frac{b}{2\sqrt{2}}\)

\(\Rightarrow \frac{\sqrt{b-2}}{b}\leq \frac{b}{2\sqrt{2}b}=\frac{1}{2\sqrt{2}}\)

\(\sqrt{c-3}=\frac{\sqrt{3(c-3)}}{\sqrt{3}}\leq \frac{1}{\sqrt{3}}.\frac{3+(c-3)}{2}=\frac{c}{2\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{c-3}}{c}\leq \frac{c}{2\sqrt{3}c}=\frac{1}{2\sqrt{3}}\)

Cộng theo vế:

\(A\leq \frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\). Đây chính là GTLN của biểu thức.

Dấu bằng xảy ra khi \(\left\{\begin{matrix} 1=a-1\\ 2=b-2\\ 3=c-3\end{matrix}\right.\Leftrightarrow a=2; b=4; c=6\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Nếu bạn đổi \(\sqrt{1-a}\mapsto \sqrt{a-1}; \sqrt{2-b}\mapsto \sqrt{b-2}; \sqrt{3-c}\mapsto \sqrt{c-3}\) thì may ra sẽ có thể tìm max bằng Cauchy

Còn nếu đề bài giữ nguyên như trên, cứ cho \(a\) càng gần 0 thì tử càng to, mẫu càng nhỏ, khi đó giá trị \(\frac{\sqrt{1-a}}{a}\) càng lớn vô cùng. Tương tự với các phân thức còn lại. Khi đó biểu thức không tồn tại GTLN

31 tháng 7 2017

3) Biến đổi tương đương:

\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)

\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)

\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0

=> (1) đúng

Dấu "=" xảy ra khi a = b = c

31 tháng 7 2017

4) Ta có: a+b>c ; b+c>a; a+c>b

Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy suy ra được điều phải chứng minh

NV
29 tháng 3 2022

Kiểm tra lại mẫu số của 3 phân thức

29 tháng 3 2022

Mẫu số của \(b+1\ne c+2,a+2.\)

Xem lại đề bạn