K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy chỉ có \(a=b=c=1\) thỏa mãn điều kiện mà đề bài cho 

\(\Rightarrow a^5+b^5+c^5=3\)

mình làm thế thôi chứ ko chắc chắn lắm đâu :((

13 tháng 7 2019

Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)

Mà a+b+c=0 nên \(a^3+b^3+c^3=3abc\)

Ta có \(\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}=\frac{(a^2+b^2+c^2)3abc}{6}=\frac{(a^2+b^2+c^2)abc}{2}\)(1)

Ta có \(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=\left(a^2+b^2+c^2\right)3abc\)(2)

Bạn nhân vế trái của (2) ra rồi nhóm lại thì đc nhứ sau

\(=>2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)3abc\)

\(=>2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

\(=>\frac{a^5+b^5+c^5}{5}=\frac{abc(a^2+b^2+c^2)}{2}\)(3)

Từ (1)và (3)=> đpcm

Học tốt nha bạn !

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

NM
2 tháng 6 2021

áp dụng bất đẳng thức bunhia ta có :

\(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

mà ta có dấu bằng xảy ra vậy ta có \(\frac{a^3}{a}=\frac{b^3}{b}=\frac{c^3}{c}\Leftrightarrow a=b=c\)

thay lại ta có \(a=b=c=1\Rightarrow a^5+b^5+c^5=3\)