K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Áp dụng Cauchy-Schwarz, ta có:

\(VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)

\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)

17 tháng 9 2017

Áp dụng bất đẳng thức Cauchy dạng phân thức

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)

\(\Rightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+ac+bc}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\) (1)

Áp dụng bất đẳng thức Cauchy dạng phân thức

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge21+9=30\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

28 tháng 3 2021

Áp dụng BĐT BSC:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{2}\)

\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

31 tháng 3 2017

Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(\Rightarrow ab+bc+ca=abc\)

Xét \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\)

\(\Leftrightarrow\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(\Leftrightarrow\dfrac{a^3}{a^2+ab+bc+ca}+\dfrac{b^3}{b^2+ab+bc+ca}+\dfrac{c^3}{c^2+ab+bc+ca}\)

\(\Leftrightarrow\dfrac{a^3}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b^3}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{c^3}{c\left(b+c\right)+a\left(b+c\right)}\)

\(\Leftrightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\\\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3b}{4}\\\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3b}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{a+b+c}{2}\ge\dfrac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{a+b+c}{2}\)

\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\ge\dfrac{a+b+c}{4}\)

\(\Leftrightarrow\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=3\)

p/s: bài này em nhớ em đã giải cho anh ròi mà ta =))

3 tháng 4 2017

đài thế cách tui ngắn hơn nhiều

14 tháng 4 2021

undefined

31 tháng 7 2017

Chứng minh : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)

\(\Leftrightarrow\dfrac{1}{2}\left(\left(x^2-y^2-xy-xz+2yz\right)^2+\left(y^2-z^2-yz-xy+2xz\right)^2+\left(z^2-x^2-xz-yz+2xy\right)^2\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge a-\dfrac{a^2b}{2\sqrt{ab}}=a-\dfrac{\sqrt{a^3b}}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b}{bc+1}\ge b-\dfrac{\sqrt{b^3c}}{2};\dfrac{c}{ca+1}\ge c-\dfrac{\sqrt{c^3a}}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge3-\dfrac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

30 tháng 7 2017

phắc cừng goao sịt sao dễ thế nhỉ :v chắc có trap :v

24 tháng 5 2018

ngược dấu rồi bạn

24 tháng 5 2018

Ôi chết

9 tháng 8 2017

Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)

\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)

\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)

Xảy ra khi \(a=b=c\)

10 tháng 8 2017

\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)

\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)

Giả sử \(a\ge b\ge c\)thì

\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh

\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c