Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Nhìn đề thấy mệt nên sửa lại đỡ mệt.
Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
Giải:
Theo đề ta có:
\(b^2=\frac{a^2+c^2}{2}\)
\(\Leftrightarrow b^2-a^2=c^2-b^2\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)
\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)
Ta cần chứng minh:
\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)
\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow0=0\)
Vậy....
Ta có :\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\) (bđt AM-GM)
Tương tự \(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{b+a}}\ge\frac{2c}{a+b+c}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{b+a}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=c\\b+c=a\\a+c=b\end{cases}}\) \(\Rightarrow a+b+c=0\) vô lý vì \(a;b;c>0\)
Vậy \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{b+a}}>2\)
\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)
\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Áp dụng bất đẳng thức bunyakovsky: \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\Leftrightarrow b+c\le\sqrt{2\left(b^2+c^2\right)}\)
tương tự với các cặp còn lại , ta thu được \(VT\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\frac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\hept{\begin{cases}\sqrt{b^2+c^2}=x\\\sqrt{a^2+c^2}=y\\\sqrt{a^2+b^2}=z\end{cases}}\)(\(x,y,z\ge0\)và \(x+y+z=\sqrt{2011}\))\(\Leftrightarrow\hept{\begin{cases}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\end{cases}}\)
\(VT\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}+\frac{x^2+z^2-y^2}{2\sqrt{2}y}+\frac{x^2+y^2-z^2}{2\sqrt{2}z}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{y^2+z^2-x^2}{x}+\frac{z^2+x^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)=\frac{1}{2\sqrt{2}}\left(\frac{y^2}{x}+\frac{z^2}{x}+\frac{z^2}{y}+\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-x-y-z\right)\)
ÁP dụng bất đẳng thức cauchy-schwarz:
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{y^2}{z}+\frac{x^2}{x}\ge\frac{\left(2x+2y+2z\right)^2}{2x+2y+2z}=2x+2y+2z\)
do đó \(VT\ge\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2}\sqrt{\frac{2011}{2}}\)( vì \(x+y+z=\sqrt{2011}\))
đẳng thức xảy ra khi \(x=y=z=\frac{\sqrt{2011}}{3}\)hay \(a=b=c=\frac{1}{3}\sqrt{\frac{2011}{2}}\)
Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{\frac{b+c}{a}}=\sqrt{\left(\frac{b+c}{a}\right).1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự:\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Đẳng thức xảy ra khi \(b+c=a,c+a=b,a+b=c\Rightarrow a+b+c=0\)
Nhưng do a, b, c > 0 (gt) nên a + b + c > 0
Vậy đẳng thức không xảy ra