Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo em bài này có 2 lỗi sai, thứ nhất:
Theo BĐT dòng 3 thì ta có :\(a+b+c\ge1\)
Tuy nhiên dấu đẳng thức lại xảy ra khi \(a=1,b=c=0\) (Thực ra thay đẳng thức a = b = c = 1 vào nó cũng không thỏa mãn!)
Thứ 2: Dòng kế cuối, nếp áp dụng BĐT dòng 4 thì: \(\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{9}\ge\frac{\left(a+b+c\right)}{9}\ge\frac{\sqrt[3]{abc}}{3}?!\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
Từ \(\frac{a}{b}< 1\Rightarrow a< b\)
\(\frac{a}{b}< \frac{a+c}{b+c}\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\Leftrightarrow ac< bc\Leftrightarrow a< b\) (đúng với giả thiết)
a/ Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\) ; \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
Cộng vế với vế:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+b+c}{a+b+c}=2\)
b/ \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) ; \(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\) ; \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Cộng vế với vế:
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)
Mặt khác:
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) ; \(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}\) ...
Bạn tự làm nốt
c/ Hoàn toàn tương tự:
\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) làm tương tự 3 cái còn lại
Cộng lại sẽ ra BĐT bên trái
Sau đó \(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\) làm tương tự với 3 cái còn lại rồi cộng lại ra BĐT bên phải
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
Đẳng thức xảy ra khi a=b=c=d
Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(A=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(A\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2.1}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Mình nghĩ CM bằng BĐT Bunhiacopxky đã là chi tiết rồi nhưng nếu bạn muốn chi tiết hơn nữa thì thế này:
Xét hiệu:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)-(a+b+c)^2\)
\(=a^2+a^2.\frac{y}{x}+a^2.\frac{z}{x}+b^2+b^2.\frac{x}{y}+b^2.\frac{z}{y}+c^2+c^2.\frac{x}{z}+c^2.\frac{y}{z}-(a^2+b^2+c^2-2ab-2bc-2ac)\)
\(=(a^2.\frac{y}{x}+b^2.\frac{x}{y}-2ab)+(a^2.\frac{z}{x}+c^2.\frac{x}{z}-2ac)+(b^2.\frac{z}{y}+c^2.\frac{y}{z}-2bc)\)
\(=(a\sqrt{\frac{y}{x}}-b\sqrt{\frac{x}{y}})^2+(a\sqrt{\frac{z}{x}}-c\sqrt{\frac{x}{z}})^2+(b\sqrt{\frac{z}{y}}-c\sqrt{\frac{y}{z}})^2\geq 0\) với mọi $a,b,c,x,y,z>0$
Do đó:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+y+z}\) (đpcm)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+z+y}\) (đpcm)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\) \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Áp dụng Cauchy-Schwarz dạng phân thức:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Leftrightarrow P+3\ge\frac{9}{2}\Rightarrow P\ge\frac{3}{2}\)
\(''=''\Leftrightarrow a=b=c\)