\(\frac{a}{bc}\))(a+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

do a,b,c > áp dụng BĐT Cosi ta có 

c+a/bc>=2<c.a/bc>=2<a/b>(bạn hiểu <> là căn bậc 2 nhan )

a+b/ac>=2<b/c>

b+c/ab>=2<c/a>

suy ra (c+a/bc)(a+b/ac)(b+c/ab)>=2<a/b>.2<b/c>.2<c/a>=8<abc/abc>=8(đpcm)

16 tháng 4 2019

Tự c/m BĐT phụ nhé: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu " = " xay ra <=> a\(\frac{a}{x}=\frac{b}{y}\)

Áp dụng:

 \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1\right)^2}{a+b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

\(\Leftrightarrow1\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow a+b+c\ge9\)

Dấu " = " xảy ra <=> a=b=c=3

17 tháng 4 2019

Anh dinh: EM có cách phần a) khá quen thuộc ạ!TỐi giờ nghĩ mãi ko ra,ai ngờ đơn giản :v

a)Áp dụng BĐT \(\frac{q^2}{x}+\frac{p^2}{y}\ge\frac{\left(q+p\right)^2}{x+y}\) hai lần,ta được:

Ta có: \(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Áp dụng BĐT quen thuộc \(a^2+b^2+c^2\ge ab+bc+ca\)

Ta có: \(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca^{\left(đpcm\right)}\)

10 tháng 5 2017

t i c k giùm t i c k giùm

11 tháng 5 2017

Cách 1:

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng BĐT Cô si cho 2 số dương ta được:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)

\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\) (Đpcm)

Cách 2: Áp dụng BĐT Cô si cho 3 số dương ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân vế theo vế ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\) (Đpcm)

6 tháng 4 2017

áp dụng a/b>=(a+m)/(b+m)                    khi a/b>1; a,b cùng dấu

=>(a+b)/c >=2(a+b)/(a+b+c)

tương tự biến đổi 2 cái còn lại rồi cộng từng vế với nhau

11 tháng 1 2017

Câu b nhá mn

11 tháng 1 2017

quá dễ BĐTAM-GM sẽ cân tất cả

13 tháng 4 2018

theo bất đẳng thức côsi ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\left(b+c\right)^2\ge4bc\)

\(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

5 tháng 3 2021

a) Áp dụng bất đẳng thức AM-GM ta có ngay :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2\left|b\right|=2b\)( do b > 0 )

=> đpcm

Đẳng thức xảy ra <=> a = b = c

b) Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)(1) ( như a) đấy :)) )

tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)(2) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)(3)

Cộng (1), (2), (3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a = b = c

c) \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

\(=\frac{a^3}{2ab}+\frac{b^3}{2ab}+\frac{b^3}{2bc}+\frac{c^3}{2bc}+\frac{c^3}{2ca}+\frac{a^3}{2ca}\)

\(=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)(I)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\left(I\right)\ge\frac{\left(a+b+b+c+c+a\right)^2}{2b+2a+2c+2b+2a+2c}=\frac{\left[2\left(a+b+c\right)\right]^2}{4\left(a+b+c\right)}=\frac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)}=a+b+c\)

hay \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)(đpcm)

Đẳng thức xảy ra <=> a = b = c

5 tháng 3 2021
Chia cả 2 vế cho b ta có : a2+c2>=2ac luôn đúng
25 tháng 4 2017

em học lớp 5 nên k hiểu được bài lớp 8 nhưng cứ comments,hi

25 tháng 4 2017

a)có \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)\)\(=\frac{\left(a+b\right)^2}{ab}\Rightarrow\frac{\left(a+b\right)^2}{ab}-4=\frac{\left(a+b\right)^2-4ab}{ab}=\frac{\left(a-b\right)^2}{ab}\)\(\ge0\forall a;b>0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)dấu''=''xảy ra khi a=b

b)B=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)mà ta có \(\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\forall x;y>0\)

\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)áp dụng bđt trên ta có B\(\ge\)2+2+2=6

dấu ''=''xảy ra khi x=y=z

26 tháng 4 2020

cảm ơn bn nha

26 tháng 4 2020

hjhj hong có gì :'3333

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)