Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Bài 1:
Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}\right)+14\)
\(=\left(2x-1\right)^2+\left(4x^2+\frac{1}{4x^2}\right)+14\)\(\ge0+2\sqrt{4x^2.\frac{1}{4x^2}}+14=2+14=16\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^2=0\\4x^2=\frac{1}{4x^2}\end{cases}\Rightarrow x=\frac{1}{2}}\)
Vậy \(Min\left(T\right)=16\)khi \(x=\frac{1}{2}\)
Bài 2:
Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\left(1\right)\)
Ta xét \(\frac{a^2}{c\left(c^2+a^2\right)}=\frac{\left(c^2+a^2\right)-c^2}{c\left(c^2+a^2\right)}=\frac{1}{c}-\frac{c}{c^2+a^2}=\frac{1}{c}-\frac{1}{a}.\frac{ac}{c^2+a^2}\ge\frac{1}{c}-\frac{1}{a}.\frac{ac}{2ac}=\frac{1}{c}-\frac{1}{2}a\)
Tương tự ta chứng minh được: \(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2}b\)và \(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2}c\)
Cộng vế 3 bất đẳng thức trên lại ta được:
\(P\ge\frac{1}{c}-\frac{1}{2}a+\frac{1}{a}-\frac{1}{2}b+\frac{1}{b}-\frac{1}{2}c\)\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\left(theo\left(1\right)\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^2=b^2\\b^2=c^2\\c^2=a^2\end{cases}\Rightarrow a=b=c=1}\)
Vậy \(Min\left(P\right)=\frac{3}{2}\)khi \(a=b=c=1\)
Học tốt!!!!
Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)
\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$
Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$
$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$
Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$
Áp dụng BĐT Bunhiacopxky:
$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$
$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$
Vậy $P_{\min}=11+2\sqrt{30}$
Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a^2+b^2+c^2\right)}{ab+bc+ca}+2\left(ab+bc+ca\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)