K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Đặt (x3;y3;z3)=(a;b;c)(x,y,z>0)(x3;y3;z3)=(a;b;c)(x,y,z>0)

xyz=1⇒xyz=1

Ta cần chứng minh

1x3+y3+1+1y3+z3+1+1z3+x3+111x3+y3+1+1y3+z3+1+1z3+x3+1≤1

Áp dụng AM-GM, ta có: x3+y3+1=(x+y)(x2xy+y2)+xyzx3+y3+1=(x+y)(x2−xy+y2)+xyz

(x+y)xy+xyz=xy(x+y+z)≥(x+y)xy+xyz=xy(x+y+z)

1x3+y3+11xy(x+y+z)⇒1x3+y3+1≤1xy(x+y+z)

Tương tự: 1y3+z3+11yz(x+y+z)1y3+z3+1≤1yz(x+y+z)

1z3+x3+11zx(x+y+z)1z3+x3+1≤1zx(x+y+z)

Cộng vế theo vế, ta được

....1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1

Vậy ta có đpcm

Đẳng thức xảy ra khi a=b=c=1

16 tháng 1 2018

tại sao lời giải chẳng hiện ra thế

11 tháng 11 2018

Ta có: \(\dfrac{a-1}{c}+\dfrac{c-1}{b}+\dfrac{b-1}{a}\)

= \(\dfrac{a-abc}{c}+\dfrac{c-abc}{b}+\dfrac{b-abc}{a}\)

= \(\dfrac{a(1-bc)}{c}+\dfrac{c(1-ab)}{b}+\dfrac{b(1-ac)}{a}\)

= \(\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{1-bc}{c}+\dfrac{1-ab}{b}+\dfrac{1-ac}{a}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:

Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$

Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)

\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)

\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)

\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)

\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)

\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$