Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
\(P=\frac{a^3}{a^2+2b^2}+\frac{b^3}{b^2+2a^2}\)
\(\Leftrightarrow P=a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a^2+2b^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\\b^2+2a^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{2ab^2}{a^2+2b^2}\le\frac{2ab^2}{2ab\sqrt{2}}=\frac{b}{\sqrt{2}}\\\frac{2a^2b}{b^2+2a^2}\le\frac{2a^2b}{2ab\sqrt{2}}=\frac{a}{\sqrt{2}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-\frac{2ab^2}{a^2+2b^2}\ge a-\frac{b}{\sqrt{2}}\\b-\frac{2a^2b}{b^2+2a^2}\ge b-\frac{a}{\sqrt{2}}\end{cases}}\)
\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge a+b-\left(\frac{a+b}{\sqrt{2}}\right)\)
\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\)
Ta có \(\sqrt{\left(a+2\right)\left(b+2\right)}\ge9\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow9\le\sqrt{\left(a+2\right)\left(b+2\right)}\le\frac{a+b+4}{2}\)
\(\Rightarrow9\le\frac{a+b+4}{2}\)
\(\Rightarrow a+b\ge14\)
\(\Rightarrow\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\ge14-7\sqrt{2}\)
\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge14-7\sqrt{2}\)
\(\Rightarrow P\ge14-7\sqrt{2}\)
Vậy GTNN của \(P=14-7\sqrt{2}\)
Từ giả thiết suy ra \(3\left(a^2b^2+b^2c^2+c^2a^2\right)\le\left(a^2+b^2+c^2\right)^2=9\to a^2b^2+b^2c^2+c^2a^2\le3.\)
Theo bất đẳng thức Cauchy-Schwart ta có \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^3+3}}\ge\frac{4a^4}{a^2b^2+3a^2+4}+\frac{4b^4}{b^2c^2+3b^2+4}+\frac{4c^4}{c^2a^2+3c^2+4}\)
\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(a^2+b^2+c^2\right)+12}\ge\frac{4\times3^2}{3+3\cdot3+12}=\frac{3}{2}.\)
Dấu bằng xảy ra khi \(a=b=c=1\to\) giá trị bé nhất của P là \(\frac{3}{2}.\)