K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

Cho a/b=(a+b+c)3/(b+c+d)= [(a+b+c)/(b+c+d)]3

Ap dung tinh chat day ti so bang nhau ta co : 

a/b=b/c=c/d ta có  

(a+b+c)/(b+c+d)= a/b=b/c=c/d (1)  

Mặt khác   a/b=b/c \(\Rightarrow\)a=b2/c (2)  

c/d=b/c $\Rightarrow$\(\Rightarrow\)d=c2/b (3)  

Ta có (2)/(3)=a/d= b3/c3 

(a/d)=(b/c)3 (4)  

Theo (1 ) thì (a+b+c)/(b+c+d)=b/c  

Vay kết hợp (1) suy ra (a+b+c)3/(b+c+d)3=(a/d)

27 tháng 7 2015

Áp dụng tính chất của dãy tỉ số bằng nhau có: 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> điều phải chứng minh

27 tháng 7 2015

Cho a/b=(a+b+c)3/(b+c+d)= [(a+b+c)/(b+c+d)]3

Ap dung tinh chat day ti so bang nhau ta co : 

a/b=b/c=c/d ta có  

(a+b+c)/(b+c+d)= a/b=b/c=c/d (1)  

Mặt khác   a/b=b/c--->a=b2/c (2)  

c/d=b/c \(\Rightarrow\)d=c2/b (3)  

Ta có (2)/(3)=a/d= b3/c3 

(a/d)=(b/c)3 (4)  

Theo (1 ) thì (a+b+c)/(b+c+d)=b/c  

Vay kết hợp (1) suy ra (a+b+c)3/(b+c+d)3=(a/d)

20 tháng 12 2017

Đặt\(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)

Ta lại có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(3\right)\)

Thay \(\left(1\right),\left(2\right)vào\left(3\right)có\)

\(\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(4\right)\)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(5\right)\)

Từ \(\left(4\right),\left(5\right)\Rightarrowđpcm\)

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

24 tháng 10 2015

bai tren dua vao bai nay nhe Đề bài :b2 = ac ; c2 = bd.a,b,c,d khác 0b3+c3+d3 khác 0Chứng minh (a3+b3+c3)/ (b3+c3+d3)= a/d 

5 tháng 11 2019

Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)( tính chất của dãy tỉ số bằng nhau )

Vậy...

14 tháng 12 2016

Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

12 tháng 6 2016

Ta có: \(b^2=ac=>\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd=>\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{a}.\frac{c}{a}.\frac{c}{a}=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}\)

=>\(\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}=\frac{a.b.c}{b.c.d}\)

=>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=>\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=>ĐPCM

12 tháng 6 2016

Hỏi đáp Toán