Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=> điều phải chứng minh
Cho a/b=(a+b+c)3/(b+c+d)3 = [(a+b+c)/(b+c+d)]3
Ap dung tinh chat day ti so bang nhau ta co :
a/b=b/c=c/d ta có
(a+b+c)/(b+c+d)= a/b=b/c=c/d (1)
Mặt khác a/b=b/c--->a=b2/c (2)
c/d=b/c \(\Rightarrow\)d=c2/b (3)
Ta có (2)/(3)=a/d= b3/c3
(a/d)=(b/c)3 (4)
Theo (1 ) thì (a+b+c)/(b+c+d)=b/c
Vay kết hợp (1) suy ra (a+b+c)3/(b+c+d)3=(a/d)
Đặt\(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)
Ta lại có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(3\right)\)
Thay \(\left(1\right),\left(2\right)vào\left(3\right)có\)
\(\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(4\right)\)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(5\right)\)
Từ \(\left(4\right),\left(5\right)\Rightarrowđpcm\)
bai tren dua vao bai nay nhe Đề bài :b2 = ac ; c2 = bd.a,b,c,d khác 0b3+c3+d3 khác 0Chứng minh (a3+b3+c3)/ (b3+c3+d3)= a/d
Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)( tính chất của dãy tỉ số bằng nhau )
Vậy...
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Ta có: \(b^2=ac=>\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd=>\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{a}.\frac{c}{a}.\frac{c}{a}=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}\)
=>\(\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}=\frac{a.b.c}{b.c.d}\)
=>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>ĐPCM
Cho a/b=(a+b+c)3/(b+c+d)3 = [(a+b+c)/(b+c+d)]3
Ap dung tinh chat day ti so bang nhau ta co :
a/b=b/c=c/d ta có
(a+b+c)/(b+c+d)= a/b=b/c=c/d (1)
Mặt khác a/b=b/c \(\Rightarrow\)a=b2/c (2)
c/d=b/c $\Rightarrow$\(\Rightarrow\)d=c2/b (3)
Ta có (2)/(3)=a/d= b3/c3
(a/d)=(b/c)3 (4)
Theo (1 ) thì (a+b+c)/(b+c+d)=b/c
Vay kết hợp (1) suy ra (a+b+c)3/(b+c+d)3=(a/d)