K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Giả sử b=  min {a,b,c}

\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)

\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)

Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:

Đó là điều hiển nhiên vì b = min {a,b,c}

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

19 tháng 7 2019

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2-ab+b^2\ge ab\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)(Vì a , b > 0)

\(\Rightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Rightarrow a^3\ge b^3-a^2b+ab^2\)

\(\Rightarrow3a^3\ge2a^3-b^3+a^2b+ab^2\)

\(\Rightarrow3a^3\ge a^3-b^3+a^3+a^2b+ab^2\)

\(\Rightarrow3a^3\ge\left(a-b\right)\left(a^2+ab+b^2\right).a\left(a^2+ab+b^2\right)\)

\(\Rightarrow3a^3\ge\left(a^2+ab+b^2\right)\left(2a-b\right)\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta có:

\(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2)

\(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Cộng vế với vế của (1) , (2) , (3)\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{2a-b+2b-c+2c-a}{3}=\frac{a+b+c}{3}\left(đpcm\right)\)

4 tháng 7 2020

\(\frac{a^3}{b^2+3}=\frac{a^3}{b^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Tương tự

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{b^2+3}=\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Theo Cô-si:\(\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\ge\frac{1}{4}\left(a+b+c\right)\ge\frac{1}{4}\sqrt{3\left(ab+bc+ca\right)}=\frac{3}{4}\)

4 tháng 11 2019

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

4 tháng 8 2019

Ôi zời:(

Áp dụng BĐT Cauchy-Schwarz dạng Engel \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Mặt khác ta có đẳng thức: \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (khai triển cái vế phải ra sẽ thấy nó bằng nhau).

Do đó \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)(đpcm)

Đúng ko ta?:3

4 tháng 8 2019

bài này max ping phải là \(\ge\frac{a+b+c}{3}\) chứ nhỉ :) 

\(\frac{a^3}{a^2+ab+b^2}=\frac{2a^3}{3\left(a^2+b^2\right)-\left(a-b\right)^2}\ge\frac{2a^3}{3\left(a^2+b^2\right)}\)

\(=\frac{2}{3}\left(a-\frac{ab^2}{a^2+b^2}\right)\ge\frac{2}{3}\left(a-\frac{ab^2}{2ab}\right)=\frac{2}{3}\left(a-\frac{b}{2}\right)\)

tương tự cộng lại ta có: \(\frac{2}{3}\left(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\right)=\frac{a+b+c}{3}\)

Dấu "=" xảy ra khi a=b=c 

NV
24 tháng 2 2020

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

28 tháng 7 2019

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

28 tháng 7 2019

èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc