Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)
\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)
\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)
CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......
(Dấu = xảy ra (=) a=b=c=1/3
\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)
Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)
=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)
\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)
Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.
Lời giải vắn tắt:
\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)
( thay \(a^2+b^2+c^2=1\))
1, Áp dụng BĐT cosi cho a,b,c>0
\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)
\(2,\)
Ta có
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng BĐT cm ở câu 1
Suy ra đpcm
Xét vế trái, ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)(Do theo giả thiết thì ab + bc + bc = 1)
\(=\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+3\)
Khi đó, ta quy BĐT cần chứng minh về: \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge\sqrt{\frac{1}{a^2}+1}+\sqrt{\frac{1}{b^2}+1}+\sqrt{\frac{1}{c^2}+1}\)\(=\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(\frac{\sqrt{a^2+1}}{a}=\frac{\sqrt{a^2+ab+bc+ca}}{a}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{a}\)\(\le\frac{\frac{a+b+a+c}{2}}{a}=\frac{2a+b+c}{2a}\)(1)
Tương tự ta có: \(\frac{\sqrt{b^2+1}}{b}\le\frac{2b+c+a}{2b}\)(2); \(\frac{\sqrt{c^2+1}}{c}\le\frac{2c+a+b}{2c}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)\(\le\frac{2a+b+c}{2a}+\frac{2b+c+a}{2b}+\frac{2c+a+b}{2c}\)
\(=3+\frac{1}{2}\left[\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)\right]\)
Đến đây, ta cần chứng minh \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge3+\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)
\(\Leftrightarrow\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\ge3\)(Điều này hiển nhiên đúng vì theo BĐT Cauchy, ta có:
\(\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)\(\ge\frac{1}{2}.6\sqrt[6]{\frac{a^2b^2c^2}{a^2b^2c^2}}=3\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = \(\frac{1}{\sqrt{3}}\)
Với mọi số thực dương a;b;c ta có BĐT:
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Tương tự, ta có:
\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)
\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)
Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)