\(ab+bc+ca\) giải phương trình ẩn x:

\(\frac{x-b-c}{a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Ta có \(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}=3\)

\(\Rightarrow\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}-3=0\)

\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-b-a}{c}-1\right)=0\)

\(\Leftrightarrow\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) nên chỉ có

x-a-b-c=0 =>x=a+b+c

Vậy x=a+b+c

15 tháng 1 2017

có thiếu gì ko bn

15 tháng 1 2017

đầu bài k đầy đủ thì giải sao được

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

\(\frac{x-b-c}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)

\(\Leftrightarrow \frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)

\(\Leftrightarrow \frac{x-b-c-a}{a}+\frac{x-a-c-b}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow (x-a-b-c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0(1)\)

Vì $abc(ab+bc+ac)\neq 0\Rightarrow \frac{ab+bc+ac}{abc}\neq 0$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\neq 0(2)$

Từ $(1);(2)\Rightarrow x-a-b-c=0\Rightarrow x=a+b+c$

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)

\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)

\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)

\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)

\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow x=a+b+c\)

Vậy x = a + b + c

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)

\(-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c

+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số

a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

b)đề bài như trên

\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

12 tháng 3 2017

b/ \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)

\(\Leftrightarrow x^2-\left(ab+bc+ca+2a+2b+2c+1\right)x+2abc+ab+bc+ca=0\)

Đặt: \(\hept{\begin{cases}ab+bc+ca+2a+2b+2c+1=m\\2abc+ab+bc+ca=n\end{cases}}\) (đặt cho gọn)

\(\Leftrightarrow x^2-mx+n=0\)

\(\Leftrightarrow\left(x^2-\frac{2m}{2}x+\frac{m^2}{4}\right)-\frac{m^2}{4}+n=0\)

\(\Leftrightarrow\left(x-\frac{m}{2}\right)^2=\frac{m^2}{4}-n\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\\x=-\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\end{cases}}\)

12 tháng 3 2017

a/ \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)

\(\Leftrightarrow\left(a+b\right)x^2-\left(a^2+b^2\right)x-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\left(a+b\right)x^2-\frac{2x\sqrt{a+b}.\left(a^2+b^2\right)}{2\sqrt{a+b}}+\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}\right)-\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\sqrt{a+b}x-\frac{a^2+b^2}{2\sqrt{a+b}}\right)^2=\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\\x=\frac{-\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\end{cases}}\)

4 tháng 3 2017

b. \(\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}=0\)\(\Leftrightarrow\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}-20=0\)\(\Leftrightarrow\dfrac{x+106}{3}-2+\dfrac{x+116}{4}-4+\dfrac{x+130}{5}-6+\dfrac{x+148}{6}-8=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\ne0\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy PT có nghiệm \(x=-100\)

5 tháng 3 2017

\(x^4+x^3+2x^2+x+1=0\\ \Leftrightarrow\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\\ \)

Vì x^2+x+1\(>0\) với mọi x và x^2+1\(>0\) với mọi x nên (x^2+x+1)(x^2+1)>0 với mọi x

Vậy phương trình vô nghiệm