Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)
\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)
\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Vậy \(a=b=c\) (Đpcm)
a) Xét hai tam giác vuông: ∆ABD và ∆ACE có:
AB = AC (do ∆ABC cân tại A)
∠A chung
⇒ ∆ABD = ∆ACE (cạnh huyền - góc nhọn)
b) Do I là trung điểm của BC (gt)
⇒ IB = IC
Xét ∆ABI và ∆ACI có:
AB = AC (cmt)
AI là cạnh chung
BI = CI (cmt)
⇒ ∆ABI = ∆ACI (c-c-c)
⇒ ∠BAI = ∠CAI (hai góc tương ứng)
⇒ AI là tia phân giác của ∠BAC
c) Do ∆ABI = ∆ACI (cmt)
⇒ ∠AIB = ∠AIC (hai góc tương ứng)
Mà ∠AIB + ∠AIC = 180⁰ (kề bù)
⇒ ∠AIB = ∠AIC = 180⁰ : 2 = 90⁰
⇒ AI ⊥ BC
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
1. Xét \(\Delta ABC\) vuông tại A có :
BC > AC ( ch > cgv) ; BC > AB .
2 . a) + b) Xét \(\Delta ABE\) và \(\Delta HBE\) có :
\(\widehat{BAC}=\widehat{EHB}=90^o;BE:chung;\widehat{ABE}=\widehat{HBE}\)
\(\Rightarrow\) \(\Delta ABE\) = \(\Delta HBE\) ( ch- gn)
\(\Rightarrow\) AB = HB
\(\Rightarrow\) \(\Delta ABH\) cân tại B mà BE là phân giác \(\Rightarrow\) BE là đường cao
\(\Rightarrow\) \(BE\perp AH\)
3.a) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^o\Rightarrow\widehat{ACB}=30^o\) ( 1 )
Có BE là phân giác \(\Rightarrow\) \(\widehat{ABE}=\widehat{EBC}=\frac{60^o}{2}=30^o\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\Delta EBC\) cân tại E mà EH là đường cao \(\Rightarrow\) EH là trung tuyến hay BH = CH
b) Xét \(\Delta EHC\) vuông tại H
\(\Rightarrow\) \(EC>HC\left(ch>cgv\right)\)
mà AB = BH ; BH = HC \(\Rightarrow\) \(EC>AB\)
ad t/ch dãy tỉ số bằng nhau, ta có:
a b = b c = c a = a + b + c b + c + a = 1 ⇒ a = b = c ( dpcm )
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\)
Có \(\hept{\begin{cases}\frac{ab}{b}=a\\\frac{bc}{c}=b\\\frac{ca}{a}=c\end{cases}}\)
nên : \(a=b=c\left(đpcm\right)\)
theo mik thì đơn giản thôi ( bn chỉ cần rút gọn ) :
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\)
\(\Leftrightarrow a=b=c\)
*sai thì thôi nhá