Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^3\right)-2y^3\)
\(=x^3+3x^3y+3xy^3+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
b) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+\left(b-c\right)^3+\left(c-b\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3ab^2-c^3+\left(c-d\right)^3\)
\(=a^3-3a^3b+3ab^2-b^3+b^3-3b^3c+3bc^2-c^3+c^3-3c^3b+3cb^3-b^3\)
\(=-b^3+3ab^2-3a^2b+a^3\)
Mọi người giúp mk với nha, bữa trước mk đi chơi hè về nên bỏ qua bài này về lý thuyết nên chẳng hiểu gì cả, các bạn giúp mk giải và giảng cũng như chú thích các bước làm và ứng dụng hằng đẳng thức nào để giúp mk hiểu bài hơn và hoàn thành bài tập về nhà với nha, mk xin cảm ơn trước và nếu các bạn làm đúng thì mk sẽ k đúng và kết bạn với các bạn nha!
Hihihi!!!^_^ Mong các bạn giúp đỡ mk!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
câu b:(x-1)(x+2)(x+3)(x+6)
= (x-1)(x+6)(x+2)(x+3)
= (x.x + 5.x - 6)(x.x + 5.x + 6)
đặt x.x + 5.x = t
=> (t -6)(t+6)
= t.t - 36
ta có:
t.t >= 0
suy ra t.t - 36 >= -36
vậy min = -36
dấu "=" xảy ra chỉ khi t.t = 0
chỉ khi x.x + 5.x = 0
chỉ khi x=0 hoặc x=-5
a) Ta có: A= 4x^2 + 4x + 11 = 4x^2 + 4x + 1 + 10
= (2x+1)^2 + 10 >= 10. A đạt giá trị nhỏ nhất = 10 khi x=-1/2
Mk lm câu c nhé, câu a và b bn tham khảo của ngô thế trường
\(c,C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
\(2>0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y-2\right)^2=0\Rightarrow y=2\end{cases}}\)
Vậy \(minC=2\Leftrightarrow x=1;y=2\)
hok tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(A=1.199+1.195+...+3.1\)
\(A=3+7+...+195+199\)
Tổng A có: \(\frac{199-3}{4}+1=50\)( số hạng)
\(\Rightarrow A=\frac{\left(199+3\right).50}{2}=5050\)
Mấy ý kia chốc về lm nốt
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)
\(B=2^{64}-1+1\)
\(B=2^{64}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có :
(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0
<=>2a2+2b2+2c2+2ab+2bc+2ca=0
<=>(a+b)2+(b+c)2+(c+a)2=0
<=>a+b =b+c =c+a =0
<=>a=b=c=0
Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.
b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y
Ta có:
\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
= a2+b2+c2+ab+bc+ca.
![](https://rs.olm.vn/images/avt/0.png?1311)
C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)
\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=4\)
b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)
\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)
\(\Leftrightarrow B=x^3-20x^2+18x+69\)
c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)
\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)
d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)
\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
Chúc bạn học tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(a+2b-5+b\right)^2-2ab+34=\left(a+2b-5\right)^2+2b\left(a+2b-5\right)+b^2-2ab+34\)
\(A=\left(a+2b-5\right)^2+5b^2-10b+5+29\)
\(A=\left(a+2b-5\right)^2+5\left(b-1\right)^2+29\ge29\)
\(A_{min}=29\) khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)
\(B=x+\frac{25}{x}-8\ge2\sqrt{x.\frac{25}{x}}-8=2\)
\(B_{min}=2\) khi \(x=5\)
\(C=\frac{x^2-15x+36}{x}=x+\frac{36}{x}-15\ge2\sqrt{x.\frac{36}{x}}-15=-3\)
\(C_{min}=-3\) khi \(x=6\)