Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số a;b;c thỏa mãn: a;b;c>0 và (a+b-c) /c=(b+c-a)/a = (c+a-b) / b
Tính M=(1+b/c).(1+a/c).(1+c/b)
Lời giải:
Nếu $a+b+c=0$ thì $\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=-2$ (đúng với ycđb)
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow 3a=3b=3c=a+b+c$
$\Rightarrow a=b=c$
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{2a.2b.2c}{abc}=8$
Từ\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
ADTCDTSBN,ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Lời giải:
$(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})=2007.90$
$\Rightarrow \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}=180630$
$\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=180630$
$\Rightarrow M+1+1+1=180630$
$\Rightarrow M =180627$
\(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
+) \(a=-b\)
Ta có: \(a+b+c=1\) \(\Rightarrow c=1\) \(\left(a=-b\right)\)
\(M=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(=\dfrac{1}{-b}+\dfrac{1}{b}+\dfrac{1}{c}=0+\dfrac{1}{1}=1\left(\left\{{}\begin{matrix}a=-b\\c=1\end{matrix}\right.\right)\)
2 trường hợp sau tương tự