
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{a}{b}\)= \(\frac{b}{c}\)\(\Rightarrow\frac{a}{b}\).\(\frac{a}{b}\)= \(\frac{b}{c}\).\(\frac{b}{c}\)
. =\(\frac{a}{b}\)\(.\frac{b}{c}\)
\(\Rightarrow\frac{a^2}{b^2}\)=\(\frac{b^2}{c^2}\)=\(\frac{a}{c}\)=\(\frac{a^2+b^2}{b^2+c^2}\)
( Dãy tỉ số bằng nhau)

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)
\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)
Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)
Dekisugi Hidetoshi làm hài v:
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\)
=> đpcm
p/s: b lấy "d" ở đâu ra vậy :V
-----đã làm sai còn s ủa---

+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)

Ta có:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\Rightarrow\left(10a+b\right)\left(b+c\right)=\left(10b+c\right)\left(a+b\right)\)
\(\Rightarrow10ab+b^2+10ac+bc=10ab+ac+10b^2+bc\Rightarrow9b^2=9ac\Rightarrow b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;
Cộng các vế tương ứng của 3 bất pt trên ta đc:
\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
<=>\(0\ge3\left(ab+bc+ac\right)\)
=> ĐPCM
Dấu = xảy ra a=b=c=0
ab/a+b=bc/b+c
=>ab(b+c)=(a+b)bc
=>ab2+abc=abc+b2c
=>ab2=b2c
=>ab=bc
=>a/b=b/c
\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow\frac{ab}{bc}=\frac{a+b}{b+c}=\frac{a}{c}\)
\(\Rightarrow ab.\left(b+c\right)=bc.\left(a+b\right)\)
\(\Rightarrow ab^2+abc=abc+b^2c\)
\(\Rightarrow ab^2=b^2c\)
\(\Rightarrow ab=bc\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)