Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b+ c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow1+2\left(ab+ac+bc\right)=0\)( vì \(a^2+b^2+c^2=1\))
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
Tới đây bạn phân tích nốt ra nhé :v
\(a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{1}{4}\left(a+b+c=0\right)\)(*)
Mặt khác : \(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c+2b^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\cdot\frac{1}{4}=1\)(theo *)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
A=x3/x2--4.x+2/x-x-4xx-4/xx-2
Điều kiện x \(\ne\)+-2
Ý b c tự làm
\(Mik\)\(làm\)\(rồi\)\(nhưng\)\(k\)\(biết\)\(đúng\)\(k???\)\(Admin\)\(cho\)\(ý\)\(kiến\)\(nha!!!\)
\(Ta\)\(có:\)\(a^2+b^2+c^2=10\Rightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(=10^2=100=a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Rightarrow a^4+b^4+c^4=100-\left(2\left(a^2b^2+a^2c^2+b^2c^2\right)\right)\)
\(Ta\)\(có:\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)
\(0=10+2\left(ab+ac+bc\right)\Rightarrow2\left(ab+ac+bc\right)=-10\)
\(\Rightarrow ab+ac+bc=-5\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(\left(-5\right)^2=25=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(25=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)\)
\(25=a^2b^2+b^2c^2+a^2c^2+2abc.0\Rightarrow a^2b^2+a^2c^2+b^2c^2=25\)
\(Vậy\)\(a^4+b^4+c^4=100-\left(2.25\right)=100-50=50\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow ab+bc+ca=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có:\(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
\(\left(a^2+b^2\right)^2=a^4+b^4+2a^2b^2=49\)(*)
Có: \(\left(a+b\right)^2=a^2+b^2+2ab=7+2ab=9\Leftrightarrow ab=1\)
Thay ab=1 vào (*) ta được \(a^4+b^4+2a^2b^2=a^4+b^4+2=49\Leftrightarrow a^4+b^4=47\)