Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: hình 2:
áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow20x=144\Rightarrow x=\dfrac{36}{5}\)
\(x+y=BC\Rightarrow\dfrac{36}{5}+y=20\Rightarrow y=\dfrac{64}{5}\)
Bài 2:
hình 4:
BC=BH+HC=1+4=5
áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow1.5=AB^2\Rightarrow x=\sqrt{5}\)
áp dụng HTL ta có: \(HC.BC=AC^2\Rightarrow4.5=AC^2\Rightarrow y=2\sqrt{5}\)
hình 6:
Áp dụng HTL ta có: \(BH.HC=AH^2\Rightarrow4x=25\Rightarrow x=\dfrac{25}{4}\)
a: \(AH=\dfrac{3\sqrt{6}}{5}\left(cm\right)\)
\(AB=\sqrt{AH^2+HB^2}=\dfrac{3\sqrt{10}}{5}\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{3^2-\left(\dfrac{3\sqrt{10}}{5}\right)^2}=\dfrac{3\sqrt{15}}{5}\left(cm\right)\)
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lại có do \(a;b;c\ge0\) nên:
\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)
\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)
Tương tự và cộng lại:
\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị
Với p = 2 => 8p2 +1 = 33 (loại)
Với p = 3 => 8p2 + 1 = 73 (tm)
Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))
Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)
Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1
= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)
Vậy p = 3 thì 8p2 + 1 \(\in P\)
- Với \(p=2\) ko thỏa mãn
- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)
- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2=3k+1\)
\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3
\(\Rightarrow8p^2+1\) là hợp số (ktm)
Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu
sai đề! bài này phải tìm Min
Max bạn nhá.Trích đề thì thử lớp 9 THPT KHTN vòng 1 đợt 3