K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

sai đề! bài này phải tìm Min

19 tháng 5 2017

Max bạn nhá.Trích đề thì thử lớp 9 THPT KHTN vòng 1 đợt 3

9 tháng 11 2021

Bài 1: hình 2:

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow20x=144\Rightarrow x=\dfrac{36}{5}\)

\(x+y=BC\Rightarrow\dfrac{36}{5}+y=20\Rightarrow y=\dfrac{64}{5}\)

Bài 2:

hình 4:

BC=BH+HC=1+4=5

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow1.5=AB^2\Rightarrow x=\sqrt{5}\)

áp dụng HTL ta có: \(HC.BC=AC^2\Rightarrow4.5=AC^2\Rightarrow y=2\sqrt{5}\)

hình 6:

Áp dụng HTL ta có: \(BH.HC=AH^2\Rightarrow4x=25\Rightarrow x=\dfrac{25}{4}\)

 

27 tháng 10 2021

a: \(AH=\dfrac{3\sqrt{6}}{5}\left(cm\right)\)

\(AB=\sqrt{AH^2+HB^2}=\dfrac{3\sqrt{10}}{5}\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{3^2-\left(\dfrac{3\sqrt{10}}{5}\right)^2}=\dfrac{3\sqrt{15}}{5}\left(cm\right)\)

28 tháng 7 2021

https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/

Bạn có thể tham khảo ở đây nha. 

NV
28 tháng 3 2023

Áp dụng BĐT Mincopxki:

\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lại có do \(a;b;c\ge0\) nên:

\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)

\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)

Tương tự và cộng lại:

\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị

28 tháng 3 2023

thầy chỉ cho em hiểu rõ hơn dòng 4 với ạ 

5 tháng 4 2022

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

NV
5 tháng 4 2022

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu