K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

#)Giải :

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)

\(\Leftrightarrow2ab=a^2+b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

7 tháng 7 2019

Ta có:\

 \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)

Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy

Do \(a^2\ge0;b^2\ge0\)

suy ra áp dụng BĐT cauchy ta có

\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi  a=b)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

22 tháng 4 2022

ké ý (b) ạ!!!

16 tháng 11 2023

haizz

16 tháng 11 2023

EZ NUB BRO CRY :>

Ta có : (a+b)2=2(a2+b2)

⇔a2+2ab+b2=2a2+2b2

⇔2ab=a2+b2

⇔a2-2ab+b2=0

⇔(a-b)2=0

⇔a-b=0

⇔a=b (đpcm)

học lại bảng hàng đẳng thức đáng nhớ đi nhá bro :>

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1

23 tháng 12 2020

Ta có: a+b+c=0

nên a+b=-c

Ta có: \(a^2-b^2-c^2\)

\(=a^2-\left(b^2+c^2\right)\)

\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)

\(=a^2-\left(b+c\right)^2+2bc\)

\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)

\(=2bc\)

Ta có: \(b^2-c^2-a^2\)

\(=b^2-\left(c^2+a^2\right)\)

\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)

\(=b^2-\left(c+a\right)^2+2ca\)

\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)

\(=2ac\)

Ta có: \(c^2-a^2-b^2\)

\(=c^2-\left(a^2+b^2\right)\)

\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)

\(=c^2-\left(a+b\right)^2+2ab\)

\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)

\(=2ab\)

Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(=\dfrac{a^3+b^3+c^3}{2abc}\)

Ta có: \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)\)

Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được: 

\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)

\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)

Vậy: \(M=\dfrac{3}{2}\)