Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
Lời giải:
\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Do đó:
$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$
Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)
\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)
\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)
\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)
\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)
\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)
Do đó 2 đẳng thức trên không bằng nhau.
1. Đề sai với $a=1; b=0; c=-1$
2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:
$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)
3. Đề sai.
$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$
$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$
$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$
$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$
$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$
$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$
$=abc(5c^2-5ab)=5abc(c^2-ab)$
2:Ta có: a+b+c=0
nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Cách khác dễ hiểu hơn
Áp dụng BĐT Cô si 2 số ko âm
Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)
Tương tự rồi sau đó lại có:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT Cô si với 3 số k âm
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)
\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)
\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)
\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
(a+b)2=a2+2ab+b2=4 (1)
a3+b3=14 (2)
a3+b3=(a+b)(a2-ab+b2)=14
=> 2(a2-ab+b2)=14 => a2-ab+b2=7 (3)
Trừ 2 vế của (1) cho (3) => 3ab=-3=>ab= -1
Nhân 2 vế của (1) với (2)
=> (a3+b3)(a2+2ab+b2)=14.4=56
=> a5+2a4b+a3b2+a2b3+2ab4+b5=56
=> (a5+b5)+2ab(a3+b3)+a2b2(a+b)=56
=> (a5+b5)+2.(-1).14+(-1)2.2=56
=> (a5+b5)-28+2=56 => a5+b5=82