Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(a=b=c=\frac{1}{2}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)
Khi a=b
Ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge0\)
\(\Leftrightarrow\frac{c^3-a^3}{a^2}+\frac{a^3-b^3}{b^2}+\frac{b^3-c^3}{c^2}\ge0\)
\(\Leftrightarrow\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
Dễ thấy: mẫu dương nên:
\(\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2-a^2b^2c^2\left(a+b+c\right)\ge0\Leftrightarrow\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2+c^5b^2+a^5c^2+b^5a^2-2a^2b^2c^2\left(a+b+c\right)\ge0\)
Chưa nghĩ ra tiếp :v
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\)
\(=\left(\frac{a^3}{b^2}+a\right)+\left(\frac{b^3}{c^2}+b\right)+\left(\frac{c^3}{a^2}+c\right)-a-b-c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\sqrt{\frac{a^3.a}{b^2}}+2.\sqrt{\frac{b^3.b}{c^2}}+2.\sqrt{\frac{c^3.c}{a^2}}-a-b-c\)\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)
Áp dụng BĐT Cauchy schwarz ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)\(\ge2\left[\frac{\left(a+b+c\right)^2}{a+b+c}\right]-a-b-c=2\left(a+b+c\right)-a-b-c=a+b+c\)
( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)