(a,b)=1(a,b)=1 tìm UCLN của:

a)a-b và ab

b) 2a+b và a(a+b)

c)ab và...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

a) Giả sử a - b và ab cùng chia hết cho số nguyên tố d.

Vì d là số nguyên tố nên nếu ab \(⋮\) d thì \(\orbr{\begin{cases}a⋮d\\b⋮d\end{cases}}\)

+ Nếu \(a⋮d\) thì a - (a - b) \(⋮\) d \(\Rightarrow\) b \(⋮\) d, vô lí với (a, b) = 1

+ Nếu \(b⋮d\) thì b + (a - b) \(⋮\) d \(\Rightarrow\) a \(⋮\) d, vô lí với (a, b) = 1

Vậy (a - b, ab) = 1

19 tháng 11 2019

Mình thấy khó quá bạn ơi! ( Tiếng Việt )

I find it so hard, friend! ( Tiếng Anh )

3 tháng 8 2017

Quy đồng lên :3

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

31 tháng 3 2018

a và b có dương ko bạn

21 tháng 1 2016

khó quaaaaaaaaaaa

11 tháng 9 2016

\(ab+bc+ac=36abc\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=36\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=36\left(1\right)\)

\(M=\frac{1}{a+b+a+c}+\frac{1}{a+b+b+c}+\frac{1}{a+c+b+c}\)

áp dụng BĐT  cô si 

\(\Rightarrow M\le\frac{1}{2}.\left(\frac{1}{\sqrt{ab}+\sqrt{ac}}+\frac{1}{\sqrt{ab}+\sqrt{bc}}+\frac{1}{\sqrt{ac}+\sqrt{bc}}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}.\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(\left(\frac{1}{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(\le\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)\)

\(\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)^2\)

\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)\)(2)

\(\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)^2\)

\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=36^2\)

\(\Rightarrow\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\le36\)(3)

từ 1 , 2 , 3

\(\Rightarrow M\le\frac{1}{2}.\sqrt{36^2}=18\)

dấu = xảy ra khi .............

11 tháng 9 2016

sửa lại chỗ

 \(M=\frac{1}{4}.36=9\)

12 tháng 11 2016

a/ Nếu (a + b) < 0 thì bất  đẳng thức đúng

Với (a + b) \(\ge0\)thì ta có

\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)

\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

12 tháng 11 2016

b/ Áp dụng BĐT BCS : 

\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)

Áp dụng câu a/ :

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)

\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)

Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9