K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(C=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2-ab+b^2=13-ab\)

Có : \(a^2+2ab+b^2=\left(a+b\right)^2\)

\(\Leftrightarrow13+2ab=1^2\)

\(\Leftrightarrow2ab=-12\)

\(\Leftrightarrow ab=-6\)

\(\Leftrightarrow C=16-\left(-6\right)=13+6=19\)

10 tháng 3 2019

\(a+b=1\Rightarrow\left(a+b\right)^2=1\)\(\Rightarrow a^2+b^2+2ab=1\)

Mà \(a^2+b^2=13\Rightarrow ab=-6\)

\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=1.\left[13-\left(-6\right)\right]=19\)

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

15 tháng 7 2018

Bài 6: 

a2+b2=(a+b)2-2ab

<=> 2010  =36-2ab   

<=>ab=-987

M=a3+b3

=(a+b)(a2-ab+b2)

=6(a2+987+b^2)

=6(2010+987)

=17982

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

3 tháng 7 2017

a.Từ giả thiết: 
x+y=1. 
=> (x+y)^3=1^3=1 
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT) 
=> x^3+y^3+3xy(x+y)=1 
=> x^3+y^3+3xy.1=1 
<=> x^3+y^3+3xy=1

b.x3-y3-3xy=x3-y3-3xy.1

Mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy(x-y)

x3-y3-3x2y+3xy

=(x-y)3=13=1

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

30 tháng 12 2021

hình bị lỗi 

30 tháng 12 2021

bị lỗi rồi bạn

 

15 tháng 1 2023

loading...  c/ 

Ta có : B=2=>6/2-2x

<=>6=4-4x

<=>6-4=-4x

<=>-4x=2

<=>x=2/-4=-1/2

d/ĐKXĐ:2-2x≠0
<=>2(1-x)≠0<=>-2(x-1)≠0

<=>x≠1

Để giá trị của biểu thức B nguyên thì 2-2x là Ư(6)

=>2-2x ∈ Ư(6)={±1;±2;±3;±6) Nếu 2-2x=1=> -2x=-1=>x=1/2( thoả mãng)

Rồi còn nhiêu bạn tự xét trường hợp y trang cách làm ở trênn nnhan :;)).À sẽ có mấy cái trường hợp nó giống ĐKXĐ thì bạn ghi trong ngoặc ko thoã mãn nhan.