K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+b^2-ab\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)(1)

Thay a+b=1 vào (1) ta có \(M=1-3ab+3ab\left(1-2ab\right)+6a^2b^2=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

Vật M = 1

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

15 tháng 7 2018

Bài 6: 

a2+b2=(a+b)2-2ab

<=> 2010  =36-2ab   

<=>ab=-987

M=a3+b3

=(a+b)(a2-ab+b2)

=6(a2+987+b^2)

=6(2010+987)

=17982

11 tháng 12 2019

Ta có: \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+3\left(a+b\right)^2-6ab+4\left(a+b\right)+4=0\)

<=> \(\left[\left(a+b\right)^3+2\left(a+b\right)^2\right]-3ab\left(a+b+2\right)+\left(a+b\right)^2+4\left(a+b\right)+4=0\)

<=> \(\left(a+b\right)^2\left(a+b+2\right)-3ab\left(a+b+2\right)+\left(a+b+2\right)^2=0\)

<=> \(\left(a+b+2\right)\left(\left(a+b\right)^2-3ab+a+b+2\right)=0\)

<=> \(\left(a+b+2\right)\left(a^2+b^2-ab+a+b+2\right)=0\)(1)

Có: \(a^2+b^2-ab+a+b+2=\frac{1}{2}\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\right]+1>0\)

=> (1) <=>  a + b + 2 = 0 <=> a + b = -2

Thế vào tìm M .

Cố gắng học tốt giúp đỡ mọi người nhiều hơn nhé! :))))

15 tháng 12 2015

Nguyen Huu The lih tih, ko lm thì thôi đi

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)

3 tháng 1 2022

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

22 tháng 10 2021

a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)

\(=x^2-x-2-2x^2+3x+2x^2+4\)

\(=x^2+2x+2\)

22 tháng 10 2021

\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)