
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài toán cho:
- (1) \(3 a + 5 b \equiv 0 \left(\right. m o d 31 \left.\right)\)
- (2) \(7 a + 22 b \equiv 0 \left(\right. m o d 31 \left.\right)\)
Bước 1: Giải hệ đồng dư
Từ (1):
\(3 a \equiv - 5 b \left(\right. m o d 31 \left.\right) .\)
=> \(a \equiv - 5 \cdot 3^{- 1} b \left(\right. m o d 31 \left.\right)\).
Phải tìm nghịch đảo của 3 modulo 31.
\(3 \cdot 21 = 63 \equiv 1 \left(\right. m o d 31 \left.\right) .\)
→ \(3^{- 1} \equiv 21\).
Vậy:
\(a \equiv - 5 \cdot 21 b \left(\right. m o d 31 \left.\right) .\)
Tính: \(- 5 \cdot 21 = - 105\).
Chia cho 31: \(- 105 \equiv - 105 + 4 \cdot 31 = - 105 + 124 = 19\).
→ \(a \equiv 19 b \left(\right. m o d 31 \left.\right)\).
Bước 2: Thay vào (2)
Thay vào (2):
\(7 a + 22 b \equiv 7 \left(\right. 19 b \left.\right) + 22 b \equiv \left(\right. 133 + 22 \left.\right) b \equiv 155 b \left(\right. m o d 31 \left.\right) .\)
Mà \(155 = 31 \cdot 5\).
→ \(155 b \equiv 0 \left(\right. m o d 31 \left.\right)\).
Đúng với mọi \(b\).
Bước 3: Kết luận
Vậy nghiệm của hệ là:
\(a \equiv 19 b \left(\right. m o d 31 \left.\right) , b \in \mathbb{Z} .\)
Hay nói cách khác: tồn tại \(k \in \mathbb{Z}\) sao cho
\(a = 19 k , b = k \left(\right. m o d 31 \left.\right) .\)
👉 Kết quả: Các cặp \(\left(\right. a , b \left.\right)\) nguyên thỏa mãn là \(\left(\right. a , b \left.\right) = \left(\right. 19 k + 31 m , \textrm{ } k + 31 n \left.\right)\), với \(k , m , n \in \mathbb{Z}\).
tham khảo

c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k

trời ơi bài này ở đâu ra zậy sao nhìn như mê cung hình như ko có cách j giải nổi