K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

A=a^3+2ab-ab+b^3 

A=(a^3+b^3)+ab

A= (a+b)(a^2-ab+b^2) +ab

A=a^2+b^2 

do a+b=1 => a^2+2ab+b^2=1 (*)  mà (a-b)^2 >=0  => a^2+b^2-2ab>=0 (**)

(*), (**) => a^2+b^2>=1/2. vậy Min A=1/2 <=> a=b

12 tháng 2 2016

 

A = a( a+ 2b ) + b( b- a )

 A = a.a+ a.2b + b.b- a.b

A = a+ 2ab + b- ab

A = (a3+b3)+(2ab-ab)

A= (a3+b3)+ab

không biết làm nữa

16 tháng 4 2017

rút gọn còn A=a^3+b^3+ab=(a+b)(a^2-ab+b^2)+ab=a^2+b^2 do a+b=1

C-S,ta có (a^2+b^2)(1^2+1^2) >/ (a+b)^2 = 1 => a^2+b^2 >/ 1/2 

đẳng thức xảy ra khi a=b=1/2

11 tháng 12 2016

Đầu tiên ta chứng minh bổ đề. 

Ta có

\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)

\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)

\(\Rightarrow a^6b^4c^2\le3^3.2^2\)

Ta lại có:

\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)

\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)

\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)

\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)

17 tháng 4 2016

c thay x=2-y , thế nào cũng ra , sau đó biến đổi như đa thức bậc 2 thui , dễ mad

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

Bài 1:

Ta có: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2-2\cdot\left(2a-3b\right)\cdot\left(2b-3a\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(5a-5b\right)^2\)

\(=\left[5\cdot\left(a-b\right)\right]^2=25\left(a-b\right)^2\)

Thay a-b=0 vào biểu thức \(A=25\left(a-b\right)^2\), ta được:

\(A=25\cdot0^2=0\)

Vậy: Khi a-b=0 thì A=0

Bài 3:

a) Ta có: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\)

Ta có: \(\left(x+4\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+4\right)^2-16\ge-16\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2+8x\) là -16 khi x=-4

24 tháng 8 2020

Ta có : \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)

Sử dụng BĐT Bunhiacopxki ta có :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}=\frac{1^2}{a^2}+\frac{1^2}{b^2}+\frac{2^2}{2ab}\ge\frac{\left(1+1+2\right)^2}{a^2+b^2+2ab}\)

\(=\frac{4^2}{\left(a+b\right)^2}=\frac{16}{2^2}=\frac{16}{4}=4\)

Dấu = xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(A_{min}=4\)khi \(a=b=1\)

24 tháng 8 2020

\(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)

\(\ge\frac{\left(1+1+2\right)^2}{a^2+2ab+b^2}=\frac{16}{\left(a+b\right)^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra <=> a = b = 1

11 tháng 6 2019

Bài 1 undefined

11 tháng 6 2019

Bài 1 :

undefined