Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn còn A=a^3+b^3+ab=(a+b)(a^2-ab+b^2)+ab=a^2+b^2 do a+b=1
C-S,ta có (a^2+b^2)(1^2+1^2) >/ (a+b)^2 = 1 => a^2+b^2 >/ 1/2
đẳng thức xảy ra khi a=b=1/2
Đầu tiên ta chứng minh bổ đề.
Ta có
\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)
\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)
\(\Rightarrow a^6b^4c^2\le3^3.2^2\)
Ta lại có:
\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)
\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)
\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)
\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)
c thay x=2-y , thế nào cũng ra , sau đó biến đổi như đa thức bậc 2 thui , dễ mad
Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT
Bài 1:
Ta có: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b\right)^2-2\cdot\left(2a-3b\right)\cdot\left(2b-3a\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b-2b+3a\right)^2\)
\(=\left(5a-5b\right)^2\)
\(=\left[5\cdot\left(a-b\right)\right]^2=25\left(a-b\right)^2\)
Thay a-b=0 vào biểu thức \(A=25\left(a-b\right)^2\), ta được:
\(A=25\cdot0^2=0\)
Vậy: Khi a-b=0 thì A=0
Bài 3:
a) Ta có: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+4\right)^2-16\ge-16\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2+8x\) là -16 khi x=-4
Ta có : \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
Sử dụng BĐT Bunhiacopxki ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}=\frac{1^2}{a^2}+\frac{1^2}{b^2}+\frac{2^2}{2ab}\ge\frac{\left(1+1+2\right)^2}{a^2+b^2+2ab}\)
\(=\frac{4^2}{\left(a+b\right)^2}=\frac{16}{2^2}=\frac{16}{4}=4\)
Dấu = xảy ra khi và chỉ khi \(a=b=1\)
Vậy \(A_{min}=4\)khi \(a=b=1\)
\(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
\(\ge\frac{\left(1+1+2\right)^2}{a^2+2ab+b^2}=\frac{16}{\left(a+b\right)^2}=\frac{16}{4}=4\)
Dấu "=" xảy ra <=> a = b = 1
A=a^3+2ab-ab+b^3
A=(a^3+b^3)+ab
A= (a+b)(a^2-ab+b^2) +ab
A=a^2+b^2
do a+b=1 => a^2+2ab+b^2=1 (*) mà (a-b)^2 >=0 => a^2+b^2-2ab>=0 (**)
(*), (**) => a^2+b^2>=1/2. vậy Min A=1/2 <=> a=b
A = a( a2 + 2b ) + b( b2 - a )
A = a.a2 + a.2b + b.b2 - a.b
A = a3 + 2ab + b3 - ab
A = (a3+b3)+(2ab-ab)
A= (a3+b3)+ab
không biết làm nữa