Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Bnhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
\(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2-ab+ab=a^2+b^2\)
Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(1=\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy Min \(a^3+b^3+ab=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Ta có:
\(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2-ab+b^2+ab=a^2+b^2=a^2+\left(1-a\right)^2\) (vì a+b=1)
\(a^2+\left(1-a\right)^2=2a^2-2a+1=2\left(a^2-a+\frac{1}{2}\right)=2\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>GTNN của biểu thức là 1/2
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Ta có a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2 ( vì a+b=1)
Lại có 2(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥142(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥14
Vậy Min M=14⇔a=b=12
Ta có : M = a3 + b3 + ab
= ( a + b ) ( a2 - ab + b2 ) + ab = a2 + b2
a + b = 1 \(\Rightarrow\)a2 + 2ab + b2 = 1 ( 1 )
mặt khác : ( a - b )2 \(\ge\)0 \(\Rightarrow\)a2 - 2ab + b2 \(\ge\)0 ( 2 )
Cộng ( 1 ) với ( 2 ), ta được 2 ( x2 + y2 ) \(\ge\)1 \(\Rightarrow\)( x2 + y2 ) \(\ge\)\(\frac{1}{2}\)
\(\Rightarrow\)giá trị nhỏ nhất của M = \(\frac{1}{2}\) \(\Leftrightarrow\)x = y = \(\frac{1}{2}\)
a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)
=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)
Dấu "=" xảy ra khi: a=b
Vậy GTNN của N là 9/2 tại a=b
b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)
<=>(a+b)2-2ab\(\ge\frac{9}{2}\)
<=>\(9-2ab\ge\frac{9}{2}\)
<=>\(2ab\le\frac{9}{2}\)
<=>\(ab\ge\frac{9}{4}\)
<=>\(ab+2\le\frac{17}{4}\)
Dấu "=" xảy ra khi a=b
Vậy GTLN của P là 17/4 tại a=b
a,có (a2+2ab+b2=4 a2-2ab+b2>=0
công 2 vế đc2(a^2+b^2)>=4=>a^+b^2>=2
Ta có
a3 + b3 + ab = (a + b)(a2 - ab + b2) + ab
= a2 + b2
Ta lại có
\(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Vậy GTNN là \(\frac{1}{2}\)đạt được khi a = b = \(\frac{1}{2}\)