K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Ta có: a+b=1(1)

=> (a+b)3=1

<=> \(a^3+3a^2b+3ab^2+b^3=1\)

<=> \(a^3+b^3+3ab\left(a+b\right)=1\)(2)

Từ (1)(2)=> \(a^3+b^3+3ab=1\)

<=> \(a^3+b^3=1-3ab\)(đpcm)

 

2 tháng 9 2019

1) \(\left(y+3\right)^3-\left(y-1\right)^3\)

=(y+3-y+1)\(\left[\left(y+3\right)^2+\left(y+3\right)\left(y-1\right)+\left(y-1\right)^2\right]\)

=4.(\(y^2+6y+9\)+\(y^2-y+3y-3\)+\(y^2-2y+1\))

=4(\(3y^2+6y+7\))

=\(12y^2+24y+28\)

3.

\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(=1.\left(a^2+b^2-ab\right)\) (1)

Lại có : \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\) thay vào (1) có :

\(a^3+b^3=1.\left(1-2ab-ab\right)\)

\(=1-3ab\left(đpcm\right)\)

1 tháng 11 2018

     \(a^3+b^3=3ab-1\)

\(\Rightarrow a^3+b^3+1-3ab=0\)

\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

Mà \(a,b>0\Rightarrow a+b+1>0\)

\(\Rightarrow a^2-ab+b^2-a-b+1=0\)

\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)

11 tháng 7 2017

1) (a+b)^2

=(a+b)(a+b)

=a^2+ab+ab+b^2

=a^2+2a+b^2

2) (a-b)^2

=(a-b)(a-b)

=a^2-ab-ab+b^2

=a^2-2ab+b^2

3)(a-b)(a+b)

=a^2+ab-ab-b^2

=a^2-b^2

4) (a+b)^3

=(a+b)^2(a+b)

=(a^2+2ab+b^2)(a+b) ( chứng minh câu a)

=a^3+a^2b+2ab^2+2a^2b+ab^2+b^3

=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3

=(a-b)^2(a-b)

=(a^2-2ab+b^2)(a-b) ( chứng minh câu b)

=a^3-a^2b+2ab^2-2a^2b+ab^2-b^3

=a^3-3a^2b+3ab^2-b^3

23 tháng 7 2017

giúp mk vs

15 tháng 8 2018

ta co : a^3 + b^3 + 3ab.(a+b)

           = (a+b).(a^2-ab+b^2) + 3ab.(a+b)

           =(a+b).(a^2-ab+b^2+3ab)

           = (a+b).(a^2+2ab+b^2)

           =(a+b).(a+b)^2 = (a+b)^3 

10 tháng 10 2018

\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)

\(2c=2x^3+2y^3\)

\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)

6 tháng 10 2016

quá dễ

16 tháng 8 2017

dễ thì làm coi

:-)