Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức Bunhiacopxki, ta có :
\(P\le\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{b+1}\right)^2+\left(\sqrt{a+1}\right)^2\right]}\)
\(=\sqrt{\left(a+b\right)\left(a+b+2\right)}\)
\(\Rightarrow P\le\sqrt{2\left(2+2\right)}=2\sqrt{2}\)
Vậy : GTLN của P là \(2\sqrt{2}\). Dấu đẳng thức xảy ra khi và chỉ khi \(a=b=1\)
Áp dụng Bất Đẳng Thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)ta có
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)
Ta có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)
Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)
Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)
Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)
Vì a,b,c>0 nên 0<abc\(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)
Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)
\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)
Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)
\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)
Dấu "=" xảy ra khi a=b=c=1
Áp dụng bất đẳng thức Holder ta có:
\(S^3=\left(\sqrt[3]{ab+2ac}.1.1+\sqrt[3]{bc+2ba}.1.1+\sqrt[3]{ca+2cb}.1.1\right)^3\le\left(ab+2ac+bc+2ba+ca+2cb\right)\left(1+1+1\right)\left(1+1+1\right)=27\left(ab+bc+ca\right)\le9\left(a+b+c\right)^2=81\)
\(\Rightarrow S\le3\sqrt[3]{3}\)
...
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
\(P=\dfrac{1}{2}\sqrt{4a\left(b+3\right)}+\dfrac{1}{2}\sqrt{4b\left(a+3\right)}\)
\(P\le\dfrac{1}{4}\left(4a+b+3\right)+\dfrac{1}{4}\left(4b+a+3\right)\)
\(P\le\dfrac{1}{4}\left(5a+5b+6\right)\le\dfrac{1}{4}\left(5.2+6\right)=4\)
\(P_{max}=4\) khi \(a=b=1\)