Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)
\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)
Chúc bạn học tốt ~
Do\(1\le a\le b\le c\le d\le4\)
\(\Rightarrow M=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b}{4}\ge2\sqrt{\frac{1}{b}.\frac{b}{4}}=1\) (AM-GM)
Dấu "=" xảy ra \(\Leftrightarrow a=1;b=c=\frac{1}{2};d=4\)
a, Từ x+y=1
=>x=1-y
Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)
\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y
=>GTNN của x3+y3 là 1/4
Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)
Vậy .......................................
b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)
Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)
\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)
(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)
\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)
=>minP=1
Dấu "=" xảy ra <=>x=y=z
Vậy.....................
Bạn ghi đề sai ở dữ kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=0\)
Vì điều đó tương đương với \(x=y=z=0\)
\(A=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+b^2+\frac{b^2+a^2}{a^2b^2}\ge0\)
\(MinA=0\Leftrightarrow\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
bạn lm sai rồi