\(\dfrac{3}{a^2+b^2}+\dfrac{2}{ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\dfrac{1}{2}\ge\sqrt{ab}\Rightarrow\dfrac{1}{4}\ge ab\)

Lại có theo AM-GM ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(\Rightarrow\dfrac{3}{a^2+b^2}\ge\dfrac{3}{2ab}\)

\(\Rightarrow A\ge\dfrac{3}{2ab}+\dfrac{2}{ab}\ge\dfrac{3}{2\cdot\dfrac{1}{4}}+\dfrac{2}{\dfrac{1}{4}}=14\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{2}\)

Vậy \(A_{Min}=14\) khi \(a=b=\dfrac{1}{2}\)

9 tháng 4 2017

\(A=\dfrac{3}{a^2+b^2}+\dfrac{3}{2ab}+\dfrac{1}{2ab}\ge\dfrac{12}{\left(a+b\right)^2}+\dfrac{2}{\left(a+b\right)^2}=14\)

28 tháng 5 2018

2,

ÁP dụng bđt phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(Tự cm) ta có

\(B\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ac\right)}+\dfrac{7}{ab+bc+ac}\)

Tiếp tục sử dụng bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow B\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}=9+\dfrac{7}{ab+bc+ac}\)

SD bđt phụ \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)

Do đo \(B\ge21+9=30\)

Dấu bằng xảy ra khi \(a=b=c=\dfrac{1}{3}\)

28 tháng 5 2018

Bài 1 SD cái bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}+\dfrac{d^2}{t}\ge\dfrac{\left(a+b+c+d\right)^2}{x+y+z+t}\)

Phương pháp : nhân các phân thức lần lượt vs tử của nó để xuất hiện bình phương biến đổi mẫu sao cho xuất hiện a +b+c+d .

Ngại trình bày vì dài quá

8 tháng 5 2018

Mình không biết làm :>

8 tháng 5 2018

Áp dụng BĐT Cauchy Schwarz có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\dfrac{2}{\sqrt{2}}\left(vìa+b\le2\sqrt{2}\right)\)

Dấu ''='' xảy ra khi \(a=b=\sqrt{2}\)

10 tháng 4 2018

Violympic toán 8

10 tháng 4 2018

Violympic toán 8